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PREFACE

Unlike Newton's mechanics, or Maxwell’s electrodynamics, or Einstein’s relativity,
quantum theory was not created—or even definitively packaged—by one individ-
ual, and it retains to this day some of the scars of its exhilarating but traumatic
youth. There is no general consensus as to what its fundamental principles are, how
it should be taught, or what it really “means.” Every competent physicist can “do”
quantum mechanics, but the stories we tell ourselves about what we are doing are
as various as the tales of Scheherazade, and almost as implausible. Niels Bohr said,
“If you are not confused by quantum physics then you haven’t really understood
it”; Richard Feynman remarked, “I think I can safely say that nobody understands
quantum mechanics.”

The purpose of this book is to teach you how to do quantum mechanics. Apart
from some essential background in Chapter 1, the deeper quasi-philosophical ques-
tions are saved for the end. I do not believe one can intelligently discuss what
quantum mechanics means until one has a firm sense of what quantum mechan-
ics does. But if you absolutely cannot wait, by all means read the Afterword
immediately following Chapter 1.

Not only is quantum theory conceptually rich, it is also technically difficult,
and exact solutions to all but the most artificial textbook examples are few and far
between. It is therefore essential to develop special techniques for attacking more
realistic problems. Accordingly, this book is divided into two parts;' Part I covers
the basic theory, and Part II assembles an arsenal of approximation schemes, with
illustrative applications. Although it is important to keep the two parts logically
separate, it is not necessary to study the material in the order presented here. Some

'This structure was inspired by David Park’s classic text, Introduction to the Quantum Theory,
3rd ed.. McGraw-Hill, New York (1992).

vii
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Preface

instructors, for example, may wish to treat time-independent perturbation theory
immediately after Chapter 2.

This book is intended for a one-semester or one-year course at the junior or
senior level. A one-semester course will have to concentrate mainly on Part I;
a full-year course should have room for supplementary material beyond Part II.
The reader must be familiar with the rudiments of linear algebra (as summarized
in the Appendix), complex numbers, and calculus up through partial derivatives;
some acquaintance with Fourier analysis and the Dirac delta function would help.
Elementary classical mechanics is essential, of course, and a little electrodynamics
would be useful in places. As always, the more physics and math you know the
easier it will be, and the more you will get out of your study. But I would like
to emphasize that quantum mechanics is not, in my view, something that flows
smoothly and naturally from earlier theories. On the contrary, it represents an
abrupt and revolutionary departure from classical ideas, calling forth a wholly new
and radically counterintuitive way of thinking about the world. That, indeed, is
what makes it such a fascinating subject.

At first glance, this book may strike you as forbiddingly mathematical. We
encounter Legendre, Hermite, and Laguerre polynomials, spherical harmonics,
Bessel, Neumann, and Hankel functions, Airy functions, and even the Riemann
zeta function—not to mention Fourier transforms, Hilbert spaces, hermitian oper-
ators, Clebsch-Gordan coefficients, and Lagrange multipliers. Is all this baggage
really necessary? Perhaps not, but physics is like carpentry: Using the right tool
makes the job easier, not more difficult, and teaching quantum mechanics without
the appropriate mathematical equipment is like asking the student to dig a foun-
dation with a screwdriver. (On the other hand, it can be tedious and diverting if
the instructor feels obliged to give elaborate lessons on the proper use of each
tool. My own instinct is to hand the students shovels and tell them to start dig-
ging. They may develop blisters at first, but I still think this is the most efficient
and exciting way to learn.) At any rate, I can assure you that there is no deep
mathematics in this book, and if you run into something unfamiliar, and you don’t
find my explanation adequate, by all means ask someone about it, or look it up.
There are many good books on mathematical methods—1I particularly recommend
Mary Boas, Mathematical Methods in the Physical Sciences, 2nd ed., Wiley, New
York (1983), or George Arfken and Hans-Jurgen Weber, Mathematical Methods for
Physicists, 5th ed., Academic Press, Orlando (2000). But whatever you do, don’t
let the mathematics—which, for us, is only a fool —interfere with the physics.

Several readers have noted that there are fewer worked examples in this book
than is customary, and that some important material is relegated to the problems.
This is no accident. I don’t believe you can learn quantum mechanics without doing
many exercises for yourself. Instructors should of course go over as many problems
in class as time allows, but students should be warned that this is not a subject
about which anyone has natural intuitions—you’re developing a whole new set
of muscles here, and there is simply no substitute for calisthenics. Mark Semon



Preface X

suggested that I offer a “Michelin Guide” to the problems, with varying numbers
of stars to indicate the level of difficulty and importance. This seemed like a good
idea (though, like the quality of a restaurant, the significance of a problem is partly
a matter of taste); I have adopted the following rating scheme:

* an essential problem that every reader should study;
*x% a somewhat more difficult or more peripheral problem;
% % % an unusually challenging problem, that may take over an hour.

(No stars at all means fast food: OK if you're hungry, but not very nourishing.)
Most of the one-star problems appear at the end of the relevant section; most of
the three-star problems are at the end of the chapter. A solution manual is available
(to instructors only) from the publisher.

In preparing the second edition I have tried to retain as much as possible the
spirit of the first. The only wholesale change is Chapter 3, which was much too
long and diverting; it has been completely rewritten, with the background material
on finite-dimensional vector spaces (a subject with which most students at this level
are already comfortable) relegated to the Appendix. I have added some examples
in Chapter 2 (and fixed the awkward definition of raising and lowering operators
for the harmonic oscillator). In later chapters I have made as few changes as I
could, even preserving the numbering of problems and equations, where possible.
The treatment i streamlined in places (a better introduction to angular momentum
in Chapter 4, for instance, a simpler proof of the adiabatic theorem in Chapter
10, and a new section on partial wave phase shifts in Chapter 11). Inevitably, the
second edition is a bit longer than the first, which I regret, but I hope it is cleaner
and more accessible.

I have benefited from the comments and advice of many colleagues, who
read the original manuscript, pointed out weaknesses (or errors) in the first edition,
suggested improvements in the presentation, and supplied interesting problems. I
would like to thank in particular P. K. Aravind (Worcester Polytech), Greg Benesh
(Baylor), David Boness (Seattle), Burt Brody (Bard), Ash Carter (Drew), Edward
Chang (Massachusetts), Peter Collings (Swarthmore), Richard Crandall (Reed),
Jeff Dunham (Middlebury), Greg Elliott (Puget Sound), John Essick (Reed), Gregg
Franklin (Carnegie Mellon), Henry Greenside (Duke), Paul Haines (Dartmouth),
J. R. Huddle (Navy), Larry Hunter (Amherst), David Kaplan (Washington), Alex
Kuzmich (Georgia Tech), Peter Leung (Portland State), Tony Liss (Illinois), Jeffry
Mallow (Chicago Loyola), James McTavish (Liverpool), James Nearing (Miami),
Johnny Powell (Reed), Krishna Rajagopal (MIT), Brian Raue (Florida Interna-
tional), Robert Reynolds (Reed), Keith Riles (Michigan), Mark Semon (Bates),
Herschel Snodgrass (Lewis and Clark), John Taylor (Colorado), Stavros Theodor-
akis (Cyprus), A.S. Tremsin (Berkeley), Dan Velleman (Amherst), Nicholas
Wheeler (Reed), Scott Willenbrock (Illinois), William Wootters (Williams), Sam
Wurzel (Brown), and Jens Zorn (Michigan).
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CHAPTER 1

PARTI THEORY

THE WAVE FUNCTION

1.1 THE SCHRODINGER EQUATION

Imagine a particle of mass m, constrained to move along the x-axis, subject to
some specified force F(x.t) (Figure 1.1). The program of classical mechanics
is to determine the position of the particle at any given time: x(¢). Once we
know that, we can figure out the velocity (v = dx/dt), the momentum (p =
mv), the kinetic energy (T = (1 /2)mv2), or any other dynamical variable of
interest. And how do we go about determining x(r)? We apply Newton’s sec-
ond law: F = ma. (For conservative systems—the only kind we shall con-
sider, and, fortunately, the only kind that occur at the microscopic level—the
force can be expressed as the derivative of a potential energy function,! F =
—3V/dx, and Newton’s law reads m d>x/dt?> = —3V/dx.) This, together with
appropriate initial conditions (typically the position and velocity at + = 0), deter-
mines x(1).

Quantum mechanics approaches this same problem quite differently. In this
case what we’re looking for is the particle’s wave function, W (x, r), and we get
it by solving the Schrédinger equation:

oW K2 82w
— = ———— 1L VW, 1.1
o ot 2m 0x2 + [1.1]

lMagnclic forces are an exception, but let’s not worry about them just yet. By the way. we shall
assume throughout this book that the motion is nonrelativistic (1 < ¢).
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E:__O] —> F(x.t)
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FIGURE 1.1: A “particle” constrained to move in one dimension under the influence
of a specified force.

Here i is the square root of —1, and # is Planck’s constant—or rather, his original
conslant (4) divided by 27

/ |
h= —— = 1.054572 x 10737 s. [1.2]
2

The Schrodinger equation plays a role logically analogous to Newton’s second
law: Given suitable initial conditions (typically, W (x, 0)), the Schrodinger equation
determines W(x,t) for all future time, just as, in classical mechanics, Newton’s
law determines x(¢) for all future time.2

1.2 THE STATISTICAL INTERPRETATION

But what exactly is this “wave function,” and what does it do for you once you’ve
got it? After all, a particle, by its nature, is localized at a point, whereas the wave
function (as its name suggests) is spread out in space (it’s a function of .x, for any
given time t). How can such an object represent the state of a particle? The answer
is provided by Born’s statistical interpretation of the wave function, which says
that | (x, 1)|? gives the probability of finding the particle at point x, at time —or,
more precisely,’

. [7 eqe . .
-~ .12 - | probability of finding the particle
[ Wx. D dx = { between a and b, at time t. [1.3]

o

Probability is the area under the graph of | |2. For the wave function in Figure 1.2,
you would be quite likely to find the particle in the vicinity of point A, where ||
is large, and relatively unlikely to find it near point B.

2For a delightful first-hand account of the origins of the Schrédinger equation see the article by
Felix Bloch in Physics Today. December 1976.

3The wave function itself is complex, but [W|? = W*W (where W* is the complex conjugate of
W) is real and nonnegative—as a probabilily. of course, must be.
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A |w]2

/\

FIGURE 1.2: A typical wave function. The shaded area represents the probability of
finding the particle between a and b. The particle would be relatively likely to be found
near A, and unlikely to be found near B.

The statistical interpretation introduces a kind of indeterminacy into quan-
tum mechanics, for even if you know everything the theory has to tell you about
the particle (to wit: its wave function), still you cannot predict with certainty the
outcome of a simple experiment to measure its position—all quantum mechan-
ics has to offer is statistical information about the possible results. This inde-
terminacy has been profoundly disturbing to physicists and philosophers alike,
and it is natural to wonder whether it is a fact of nature. or a defect in the
theory.

Suppose I do measure the position of the particle, and I find it to be at point
C.* Question: Where was the particle just before I made the measurement? There
are three plausible answers to this question, and they serve to characterize the main
schools of thought regarding quantum indeterminacy:

1. The realist position: The particle was at C. This certainly seems like a sen-
sible response, and it is the one Einstein advocated. Note, however, that if this is
true then quantum mechanics is an incomplete theory, since the particle really was
at C, and yet quantum mechanics was unable to tell us so. To the realist, indeter-
minacy is not a fact of nature, but a reflection of our ignorance. As d’Espagnat put
it, “the position of the particle was never indeterminate, but was merely unknown
to the experimenter.”> Evidently W is not the whole story—some additional infor-
mation (known as a hidden variable) is needed to provide a complete description
of the particle.

2. The orthodox position: The particle wasn't really anywhere. It was the act
of measurement that forced the particle to “take a stand” (though how and why it
decided on the point C we dare not ask). Jordan said it most starkly: “Observations
not only disturb what is to be measured, they produce it ... We compel (the

40f course, no measuring instrument is perfectly precise: what I mean is that the particle was
found in the viciniry of C. to within the tolerance of the equipment.

3Bernard d'Espagnat, “The Quantum Theory and Reality” (Scientific American, November 1979.
p. 163).
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particle) to assume a definite position.”® This view (the so-called Copenhagen
interpretation), is associated with Bohr and his followers. Among physicists it
has always been the most widely accepted position. Note, however, that if it is
correct there is something very peculiar about the act of measurement—something
that over half a century of debate has done precious little to illuminate.

3. The agnostic position: Refuse to answer. This is not quite as silly as it
sounds—after all, what sense can there be in making assertions about the status
of a particle before a measurement, when the only way of knowing whether you
were right is precisely to conduct a measurement, in which case what you get is no
longer “before the measurement?” It is metaphysics (in the pejorative sense of the
word) to worry about something that cannot, by its nature, be tested. Pauli said:
“One should no more rack one’s brain about the problem of whether something one
cannot know anything about exists all the same, than about the ancient question of
how many angels are able to sit on the point of a needle.”” For decades this was the
“fall-back™ position of most physicists: They’d try to sell you the orthodox answer,
but if you were persistent they'd retreat to the agnostic response, and terminate the
conversation.

Until fairly recently, all three positions (realist, orthodox, and agnostic) had
their partisans. But in 1964 John Bell astonished the physics community by showing
that it makes an observable difference whether the particle had a precise (though
unknown) position prior to the measurement, or not. Bell’s discovery effectively
eliminated agnosticism as a viable option, and made it an experimental question
whether 1 or 2 is the correct choice. I'll return to this story at the end of the book,
when you will be in a better position to appreciate Bell’s argument; for now, suffice
it to say that the experiments have decisively confirmed the orthodox interpreta-
tion:® A particle simply does not /iave a precise position prior to measurement, any
more than the ripples on a pond do; it is the measurement process that insists on
one particular number, and thereby in a sense creates the specific result, limited
only by the statistical weighting imposed by the wave function.

What if 1 made a second measurement, immediately after the first? Would I
get C again, or does the act of measurement cough up some completely new num-
ber each time? On this question everyone is in agreement: A repeated measurement
(on the same particle) must return the same value. Indeed, it would be tough to
prove that the particle was really found at C in the first instance, if this could not
be confirmed by immediate repetition of the measurement. How does the orthodox

5Quoted in a lovely article by N. David Mermin. “Is the moon therc when nobody looks?”
(Physics Today. April 1985. p. 38).

7Quoted by Mermin (footnote 6). p. 40.

$This statement is a little 1oo strong: There remain a few theoretical and experimental loopholes,
some of which T shall discuss in the Afterword. There cxist viable nonlocal hidden variable theories
(notably David Bohm's), and other formulations (such as the many worlds interpretation) that do not
fit cleanly into any of my thrée categories. But 1 think it is wisc. at least from a pedagogical point of
view. to adopt a clear and coherent platform at this stage. and worry about the alternatives later,
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w2 ﬂ

FIGURE 1.3: Collapse of the wave function: graph of |¥[? immediately after a
measurement has found the particle at point C.

interpretation account for the fact that the second measurement is bound to yield
the value C? Evidently the first measurement radically alters the wave function,
so that it is now sharply peaked about C (Figure 1.3). We say that the wave func-
tion collapses, upon measurement, to a spike at the point C (it soon spreads out
again, in accordance with the Schrddinger equation, so the second measurement
must be made quickly). There are, then, two entirely distinct kinds of physical pro-
cesses: “‘ordinary” ones, in which the wave function evolves in a leisurely fashion
under the Schrédinger equation, and *“‘measurements,” in which ¥ suddenly and
discontinuously collapses.’

1.3 PROBABILITY

1.3.1 Discrete Variables

Because of the statistical interpretation, probability plays a central role in quantum
mechanics, so I digress now for a brief discussion of probability theory. It is mainly
a question of introducing some notation and terminology, and I shall do it in the
context of a simple example.

Imagine a room containing fourteen people, whose ages are as follows:

one person aged 14,
one person aged 15,

three people aged 16,

9The role of measurement in quantum mechanics is so critical and so bizarre that you may
well be wondering what precisely constitutes a measurement. Does it have to do with the interaction
between a microscopic (quantum) system and a macroscopic (classical) measuring apparatus (as Bohr
insisted), or is it characterized by the leaving of a permanent “record” (as Heisenberg claimed), or does
it involve the intervention of a conscious “observer” (as Wigner proposed)? I'll return to this thorny
issue in the Afterword: for the moment let’s take the naive view: A measurement is the kind of thing
that a scientist does in the laboratory. with rulers, stopwatches, Geiger counters, and so on.
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two people aged 22,
two people aged 24,
five people aged 25.

If we let N(j) represent the number of people of age j, then

N(14) = 1,
N(15) = 1,
N(16) = 3,
N(Q22) =2,
NQ4) =2,
N(25) =5,

while N(17), for instance, is zero. The fotal number of people in the room is
o0
N =Y N(@). [1.4]
=0

(In the example, of course, N = 14.) Figure 1.4 is a histogram of the data. The
following are some questions one might ask about this distribution.

Question 1. If you selected one individual at random from this group, what
is the probability that this person’s age would be 15?7 Answer: One chance in
14, since there are 14 possible choices, all equally likely, of whom only one has
that particular age. If P(j) is the probability of getting age j, then P(14) =
1/14, P(15) =1/14, P(16) = 3/14, and so on. In general,

N({)

P(j)= N

[1.5]

¥ T L

-

| S— 3 BN B
r

1 i 1 t
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

FIGURE 1.4: Histogram showing the number of people, N(j), with age j, for the
distribution in Section 1.3.1.
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Notice that the probability of getting either 14 or 15 is the sum of the individual
probabilities (in this case, 1/7). In particular, the sum of all the probabilities is
l—you’re certain to get some age:

ZP(j): 1. [1.6]

Jj=0

Question 2. What is the most probable age? Answer: 25, obviously; five
people share this age, whereas at most three have any other age. In general, the
most probable j is the j for which P(j) is a maximum.

Question 3. What is the median age? Answer: 23, for 7 people are younger
than 23, and 7 are older. (In general, the median is that value of j such that the
probability of getting a larger result is the same as the probability of getting a
smaller result.)

Question 4. What is the average (or mean) age? Answer:

(14) + (15) 4+ 3(16) + 2(22) + 2(24) + 5(25) _ 294
14 14

= 21.

In general, the average value of j (which we shall write thus: (j)) is

.N . o
= =ND 5 i), (1.7
j=0

Notice that there need not be anyone with the average age or the median age—in
this example nobody happens to be 21 or 23. In quantum mechanics the average
is usually the quantity of interest; in that context it has come to be called the
expectation value. It’s a misleading term, since it suggests that this is the outcome
you would be most likely to get if you made a single measurement (that would
be the most probable value, not the average value)—but I'm afraid we’re stuck
with it,

Question 5. What is the average of the squares of the ages? Answer: You
could get 14? = 196, with probability 1/14, or 15? = 225, with probability 1/14,
or 162 = 256, with probability 3/14, and so on. The average, then, is

G =D PPPU). [1.8]
=0

In general, the average value of some function of j is given by

(FDY =D FDPU). [1.9]

Jj=0
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N() A N(j) A

.

8 9 10 1 2 3 456 7 8 9 10

1 2 3 4 5 6 7

FIGURE 1.5: Two histograms with the same median, same average, and same most
probable value, but different standard deviations.

(Equations 1.6, 1.7, and 1.8 are, if you like, special cases of this formula.) Beware:
The average of the squares, (j2), is not equal, in general, to the square of the
average, (j)2. For instance, if the room contains just two babies, aged 1 and 3,
then (x2) =5, but (x)2 =

Now, there is a conspicuous difference between the two histograms in Figure 1.5,
even though they have the same median, the same average, the same most probable
value, and the same number of elements: The first is sharply peaked about the average
value, whereas the second is broad and flat. (The first might represent the age profile
for students in a big-city classroom, the second, perhaps, a rural one-room school-
house.) We need a numerical measure of the amount of “spread” in a distribution,
with respect to the average. The most obvious way to do this would be to find out
how far each individual deviates from the average,

Aj=Jj— ) [1.10]

and compute the average of Aj. Trouble is, of course, that you get zero, since, by
the nature of the average, Aj is as often negative as positive:

(A=) (= UNPGW =D JPG =) Y P()
= (j) — () =0.

(Note that (j) is constant—it does not change as you go from one member of
the sample to another—so it can be taken outside the summation.) To avoid this
irritating problem you might decide to average the absolute value of Aj. But
absolute values are nasty to work with; instead, we get around the sign problem
by squaring before averaging:

o = ((Aj)?). [1.11]
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This quantity is known as the variance of the distribution; o itself (the square
root of the average of the square of the deviation from the average— gulp!) is
called the standard deviation. The latter is the customary measure of the spread
about (j).

There is a useful little theorem on variances:

o = (A% =Y (AN*P) =D (J = (NP
=D (P =2 + (WP

=Y FPPD) =200 D PP+ ()P

= (2 = 2()(j) + () = (D) — )~

Taking the square root, the standard deviation itself can be written as

o =/{% = () [1.12]

In practice, this is a much faster way to get o: Simply calculate (j2) and ()2,
subtract, and take the square root. Incidentally, I warned you a moment ago that
(j) is not, in general, equal to (j)2. Since o2 is plainly nonnegative (from its
definition in Equation 1.11), Equation 1.12 implies that

2

(%) = ()% [1.13]

and the two are equal only when o = 0, which is to say, for distributions with no
spread at all (every member having the same value).

1.3.2 Continuous Variables

So far, I have assumed that we are dealing with a discrete variable—that is, one
that can take on only certain isolated values (in the example, j had to be an
integer, since I gave ages only in years). But it is simple enough to generalize to
continuous distributions. If I select a random person off the street, the probability
that her age is precisely 16 years, 4 hours, 27 minutes, and 3.333 ... seconds is
zero. The only sensible thing to speak about is the probability that her age lies in
some interval —say, between 16 and 17. If the interval is sufficiently short, this
probability is proportional to the length of the interval. For example, the chance that
her age is between 16 and 16 plus nvo days is presumably twice the probability
that it is between 16 and 16 plus one day. (Unless, I suppose, there was some
extraordinary baby boom 16 years ago, on exactly that day—in which case we
have simply chosen an interval too long for the rule to apply. If the baby boom
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lasted six hours, we’ll take intervals of a second or less, to be on the safe side.
Technically, we're talking about infinitesimal intervals.) Thus

probability that an individual (chosen
at random) lies between x and (x + dx)

} —p()dx.  [1.14]

The proportionality factor, p(x), is often loosely called “the probability of getting
Xx,” but this is sloppy language; a better term is probability density. The probability
that v lies between ¢ and b (a finite interval) is given by the integral of p(x):

b
P, = f p(x)dx, [1.15]
a
and the rules we deduced for discrete distributions translate in the obvious way:
+o0
| =f plx)dx, [1.16]
—cc
+0c
(x) =f xp(x)dx, [1.17]
—00
+oC
(f(x)) =f Fx)p(x)dx, [1.18]
-0
ot = ((Ax)?) = (x%) — (x)% [1.19]

Example 1.1 Suppose I drop a rock off a cliff of height /1. As it falls. T snap a
million photographs, at random intervals. On each picture 1 measure the distiancy
the rock has fallen. Question: What is the average of all these distances? Tnat
to say, what is the time average of the distance traveled?!"

Solution: The rock starts out at rest, and picks up speed as it falls; it spends more
time near the top, so the average distance must be less than //2. Ignoring air
resistance, the distance x at time ¢ is

1,
(1) = —ot°.
x(t) 28

The velocity is dx/dt = gt, and the total flight time is T = ,/2/1/g. The probability
that the camera flashes in the interval dt is dt/ T, so the probability that a given

A statistician will complain that T am confusing the average of a finite sample (a million, in
this case) with the “truc™ average (over the whole continuum). This can be an awkward problem for
the experimentalist, especially when the sample size is small, but here I am only concerned. of course,
with the true average. Lo which the sample average is presumably a good approximation.
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FIGURE 1.6: The probability density in Example 1.1: p(x) = 1/2+bx).
photograph shows a distance in the corresponding range dx is

dt _dx [g |

?_E 2h 2/ hx

dx.
Evidently the probability density (Equation 1.14) is

1
X) = , O<x<h
p(x) Wi O <x=<h)

(outside this range, of course, the probability density is zero).
We can check this result, using Equation 1.16:

hoog 1 ’
fo == (277 =t
The average distance (Equation 1.17) is
ot 2\
0= [ = o ()=

which is somewhat less than #/2, as anticipated.

Figure 1.6 shows the graph of p(x). Notice that a probability density can
be infinite, though probability itself (the integral of p) must of course be finite
(indeed, less than or equal to 1).
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*xProblem 1.1 For the distribution of ages in Section 1.3.1:

(a) Compute (j2) and (j)2.

(b) Determine Aj for each j, and use Equation 1.11 to compute the standard
deviation.

(c) Use your results in (a) and (b) to check Equation 1.12.

Problem 1.2

(a) Find the standard deviation of the distribution in Example 1.1.

(b) What is the probability that a photograph, selected at random, would show a
distance x more than one standard deviation away from the average?

*xProblem 1.3 Consider the gaussian distribution

p(x) — Ae”}‘("’_“)z‘

where A, a, and A are positive real constants. (Look up any integrals you need.)
(a) Use Equation 1.16 to determine A.
(b) Find (x), (x*), and o.
(c) Sketch the graph of p(x).

1.4 NORMALIZATION

We return now to the statistical interpretation of the wave function (Equation 1.3),
which says that | (x, 1)|* is the probability density for finding the particle at point
x, at time 7. It follows (Equation 1.16) that the integral of |¥|?> must be 1 (the
particle’s got to be somewhere):

+o0
f |W(x, 1)|*dx = 1. [1.20]

=00

Without this, the statistical interpretation would be nonsense.

However, this requirement should disturb you: After all, the wave function is
supposed to be determined by the Schriodinger equation—we can’t go imposing
an extraneous condition on W without checking that the two are consistent. Well, a
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glance at Equation 1.1 reveals that if ¥ (x, t) is a solution, so too is AWV (x. 1), where
A is any (complex) constant. What we must do, then, is pick this undetermined
multiplicative factor so as to ensure that Equation 1.20 is satisfied. This process
is called normalizing the wave function. For some solutions to the Schriodinger
equation the integral is infinite; in that case no multiplicative factor is going to
make it 1. The same goes for the trivial solution ¥ = 0. Such non-normalizable
solutions cannot represent particles, and must be rejected. Physically realizable
states correspond to the square-integrable solutions to Schrodinger’s equation.!!

But wait a minute! Suppose I have normalized the wave function at time t = 0.
How do I know that it will sray normalized, as time goes on, and W evolves? (You
can’t keep renormalizing the wave function, for then A becomes a function of ¢,
and you no longer have a solution to the Schrodinger equation.) Fortunately, the
Schrodinger equation has the remarkable property that it automatically preserves the
normalization of the wave function—without this crucial feature the Schrédinger
equation would be incompatible with the statistical interpretation, and the whole
theory would crumble.

This is important, so we’d better pause for a careful proof. To begin with,

|W(x.0)|* dx =f

-0

400 400

0 5
- —|W(x, O dx. :
il W D do [1.21]

(Note that the integral is a function only of r, so I use a toral derivative (d/dt)
in the first expression, but the integrand is a function of x as well as ¢, so it's a
partial derivative (3/3t) in the second one.) By the product rule,

3 5 B oV ow*
—|¥|" = —(V*P) = ¥*— 1.22
arl | 8r( ) ot + ot [ ]
Now the Schrodinger equation says that
oV [h oW |
—_—= — -V, 1.23
ot 2m ox2 A [1.23]
and hence also (taking the complex conjugate of Equation 1.23)
ow* ih 32Ww*
= —— —Vu*, 1.24
ot 2m 0x2 + h [ ]
SO
) ih LA AV 8 [in v Ju*
— W= — | W - V)= —|[—(v*— — wl|. [1.25
8[' | 2m ( dx2 dx2 ) dx [Zm ( dx dx )] [1.23]

llEvide:ntly W(x.t) must go to zero faster than 1//]x], as |x| — oc. Incidentally. normalization
only fixes the modulus of A: the phase remains undetermined. However. as we shall see, the latter
carries no physical significance anyway.
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The integral in Equation 1.21 can now be evaluated explicitly:

+00 ] o P +
dif W) dx = 2 (\p _d w)| ” [1.26]
l J_xo —00

2m a_r ox

But W(x, t) must go to zero as x goes to (1) infinity—otherwise the wave function
would not be normalizable.'? It follows that

d +o00
Ef W (x, n)|*dx =0, [1.27]
-0

and hence that the integral is constant (independent of time); if W is normalized
at t = 0, it stays normalized for all future time. QED

Problem 1.4 At time r = 0 a particle is represented by the wave function

(AL if 0 <x <a,
a
W(x,0) =i A(b—x). ifa<x<b,
(b —a) T
| 0, otherwise,

where A, a, and b are constants.
(a) Normalize W (that is, find A, in terms of a and b).
(b) Sketch W(x.0), as a function of x.
(c) Where is the particle most likely to be found, at r = 0?

(d) What is the probability of finding the particle to the left of a? Check your
result in the limiting cases b = a and b = 2a.

(e) What is the expectation value of x?

xProblem 1.5 Consider the wave function

\I/(x. T) — Ae—k].\']e—iwt’

where A, A, and w are positive real constants. (We’ll see in Chapter 2 what potential
(V) actually produces such a wave function.)

(a) Normalize W.

(b) Determine the expectation values of x and x2.

12A good mathematician can supply you with pathological counterexamples, but they do not arise
in physics; for us the wave function always goes to zero at infinity.
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(c) Find the standard deviation of x. Sketch the graph of |W|?, as a function
of x, and mark the points ({x) + ¢) and ({(x) — o), to illustrate the sense in
which o represents the “spread” in x. What is the probability that the particle
would be found outside this range?

1.5 MOMENTUM

For a particle in state W, the expectation value of x is

+o00
(x) = f x|W(x. )| dx. [1.28]

[ —20

What exactly does this mean? It emphatically does not mean that if you measure
the position of one particle over and over again, [ x|W|%dx is the average of the
results you’ll get. On the contrary: The first measurement (whose outcome is inde-
terminate) will collapse the wave function to a spike at the value actually obtained,
and the subsequent measurements (if they’'re performed quickly) will simply repeat
that same result. Rather, (x) is the average of measurements performed on particles
all in the state ¥, which means that either you must find some way of returning the
particle to its original state after each measurement, or else you have to prepare a
whole ensemble of particles, each in the same state ¥, and measure the positions of
all of them: (x) is the average of rhese results. (I like to picture a row of bottles on
a shelf, each containing a particle in the state W (relative to the center of the bottle).
A graduate student with a ruler is assigned to each bottle, and at a signal they all
measure the positions of their respective particles. We then construct a histogram
of the results, which should match |W|?, and compute the average, which should
agree with (x). (Of course, since we're only using a finite sample, we can’t expect
perfect agreement, but the more bottles we use, the closer we ought to come.)) In
short, the expectation value is the average of repeated measurements on an ensem-
ble of identically prepared systems, not the average of repeated measurements on
one and the same system.

Now, as time goes on, (x) will change (because of the time dependence
of V), and we might be interested in knowing how fast it moves. Referring to
Equations 1.25 and 1.28, we see that!?

d(x) f B 5 ih ] ( o gw*
2 x=Wfrdyx = — | x— [ WF— — V) dx. 1.29
dt ! arl [ dx 2m 7cax ox ox g [ ]

B3To keep things from getling too cluttered. I'll suppress the limits of integration.
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This expression can be simplified using integration-by-parts: '

d(x) ih oV oW
- W — V) dx. 1.30
dt 2m ( a.x ax ' L1.30]

(I used the fact that dx/dx = 1, and threw away the boundary term, on the ground
that ¥ goes to zero at (1) infinity.) Performing another integration by parts, on
the second term, we conclude:

= | v gy, [1.31]

What are we to make of this result? Note that we’re talking about the “veloc-
ity” of the expectation value of x, which is not the same thing as the velocity of
the particle. Nothing we have seen so far would enable us to calculate the velocity
of a particle. It’s not even clear what velocity means in quantum mechanics: If the
particle doesn’t have a determinate position (prior to measurement), neither does it
have a well-defined velocity. All we could reasonably ask for is the probability of
getting a particular value. We’ll see in Chapter 3 how to construct the probability
density for velocity, given W¥; for our present purposes it will suffice to postu-
late that the expectation value of the velocity is equal to the time derivative of the
expectation value of position:

_dw
(v) = e [1.32]

Equation 1.31 tells us, then, how to calculate (v) directly from W.
Actually, it is customary to work with momentum (p = miv), rather than

velocity:

d{x) f ow

=m—— = —ih w*— | dx. 1.33
(p) =m p i ( 5 ) X [ ]

'4The product rule says that

d _ dg df
d.\'(fg) = j‘d-\ + Z{' 7.
from which it follows that
b d b d
LaAg f . 1l
—dyx=—] —gdx .
=) o8t fel,

Under the integral sign. then, you can peel a derivative off one factor in a product, and slap it onto the
other one—it'll cost you a minus sign. and you'll pick up a boundary term.
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Let me write the expressions for (x) and (p) in a more suggestive way:

(x) = f W (x)W dx, [1.34]
(p) = f v (E—?—> Wdx. [1.35]
/ I 0x

We say that the operator'> x “represents” position, and the operator (/i/i)(d/9x)
“represents” momentum, in quantum mechanics; to calculate expectation values we
“sandwich” the appropriate operator between W* and W, and integrate.

That’s cute, but what about other quantities? The fact is, all classical dynami-
cal variables can be expressed in terms of position and momentum. Kinetic energy,
for example, is

| p?

T = —my? =
2’v 2m

.

and angular momentum is
L=rxmv=rxp

(the latter, of course, does not occur for motion in one dimension). To calculate
the expectation value of any such quantity, Q(x. p), we simply replace every p
by (h/i)(8/0x), insert the resulting operator between W* and W, and integrate:

h a
(O(x. p)) = f w*Q (x, TTX) W dx. [1.36]
For example, the expectation value of the kinetic energy is
h? 9w
T)=—— [ V* Ix. 1.37
) 2m ax2 [1.37]

Equation 1.36 is a recipe for computing the expectation value of any dynamical
quantity, for a particle in state ¥ it subsumes Equations 1.34 and 1.35 as special
cases. I have tried in this section to make Equation 1.36 seem plausible, given
Born’s statistical interpretation, but the truth is that this represents such a radically
new way of doing business (as compared with classical mechanics) that it's a good
idea to get some practice using it before we come back (in Chapter 3) and put it
on a firmer theoretical foundation. In the meantime, if you prefer to think of it as
an axiom, that’s fine with me.

IS An “operator” is an instruction o do something to the function that follows it. The position
operator tells you o mudtiply by x: the momentum operator tells you to differentiate with respecet o
x (and multiply the result by —ih). In this book all operators will be derivatives (d/a't. 11'2/(1’!2.
A faoe . 1 . I . .

()-/r)xr)_\r. etc.) or multipliers (2, /. x=. ctc.). or combinations of these.
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Problem 1.6 Why can’t you do integration-by-parts directly on the middle expres-
sion in Equation 1.29—pull the time derivative over onto x, note that dx/dr = 0,
and conclude that d(x)/dt = 0?

xProblem 1.7 Calculate d{p)/dt. Answer:

4p) _ <_av>. [1.38]

dt ax

Equations 1.32 (or the first part of 1.33) and 1.38 are instances of Ehrenfest’s
theorem, which tells us that expectation values obey classical laws.

Problem 1.8 Suppose you add a constant Vj to the potential energy (by “‘constant™
I mean independent of x as well as 7). In classical mechanics this doesn’t change
anything, but what about guantum mechanics? Show that the wave function picks
up a time-dependent phase factor: exp(—i Vpt/li). What effect does this have on
the expectation value of a dynamical variable?

1.6 THE UNCERTAINTY PRINCIPLE

Imagine that you're holding one end of a very long rope, and you generate a
wave by shaking it up and down rhythmically (Figure 1.7). If someone asked you
“Precisely where is that wave?” you’d probably think he was a little bit nutty: The
wave isn’t precisely anywhere—it’s spread out over 50 feet or so. On the other
hand, if he asked you what its wavelength is, you could give him a reasonable
answer: It looks like about 6 feet. By contrast, if you gave the rope a sudden jerk
(Figure 1.8), you'd get a relatively narrow bump traveling down the line. This time
the first question (Where precisely is the wave?) is a sensible one, and the second
(What is its wavelength?) seems nutty—it isn’t even vaguely periodic, so how
can you assign a wavelength to it? Of course, you can draw intermediate cases, in
which the wave is fairly well localized and the wavelength is fairly well defined,
but there is an inescapable trade-off here: The more precise a wave's position is,
the less precise is its wavelength, and vice versa.!® A theorem in Fourier analysis
makes all this rigorous, but for the moment I am only concerned with the qualitative
argument.

16Thats why a piccolo player must be right on pitch. whereas a double-bass player can atford to
wear garden gloves. For the piccolo. a sixty-fourth note contains many full cycles. and the frequency
(we're working in the time domain now, instead of space) is well defined. whereas for the bass. at a
much lower register. the sixty-fourth note contains only a few cycles, and all you hear is a general sort
of “oomph,” with no very clear pitch.
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10 20 30 40 50 x (feet)
FIGURE 1.7: A wave with a (fairly) well-defined wavelength, but an ill-defined

position.

'A —_—
/ : 10 20 30 40 50 x (feet)

FIGURE 1.8: A wave with a (fairly) well-defined position, but an ill-defined wave-
length.

This applies, of course, to any wave phenomenon, and hence in particular to
the quantum mechanical wave function. Now the wavelength of W is related to the
momentum of the particle by the de Broglie formula:!”

h . 2 h

p=

X x [1.39]

Thus a spread in wavelength corresponds to a spread in momentum, and our general
observation now says that the more precisely determined a particle’s position is,
the less precisely is its momentum. Quantitatively,

h
G_\-Gp vl 5‘, []-40]

where o, is the standard deviation in x, and o), is the standard deviation in p.
This is Heisenberg’s famous uncertainty principle. (We’ll prove it in Chapter 3,
but I wanted to mention it right away, so you can test it out on the examples in
Chapter 2.)

Please understand what the uncertainty principle means: Like position mea-
surements, momentum measurements yield precise answers—the *‘spread” here
refers to the fact that measurements on identically prepared systems do not yield
identical results. You can, if you want, construct a state such that repeated posi-
tion measurements will be very close together (by making W a localized “spike™),
but you will pay a price: Momentum measurements on this state will be widely
scattered. Or you can prepare a state with a reproducible momentum (by making

1 prove this in due course. Many authors take the de Broglie formula as an axiom, from
which they then deduce the association of momentum with the operator (fi/i)(3/dx). Although this is
a conceptually cleaner approach, it involves diverting mathematical complications that I would rather
save for later.
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¥ a long sinusoidal wave), but in that case, position measurements will be widely
scattered. And, of course, if you're in a really bad mood you can create a state for
which neither position nor momentum is well defined: Equation 1.40 is an inequal-
ity, and there’s no limit on how big o, and o, can be—just make W some long
wiggly line with lots of bumps and potholes and no periodic structure.

*Problem 1.9 A particle of mass m is in the state
W(x,1) = Ae—a[(rnxz/h)+il]’

where A and a are positive real constants.

(a) Find A.

(b) For what potential energy function V(x) does W satisfy the Schrodinger
equation?

(c) Calculate the expectation values of x, xz, p, and pzA

(d) Find o, and op,. Is their product consistent with the uncertainty principle?

FURTHER PROBLEMS FOR CHAPTER 1

Problem 1.10 Consider the first 25 digits in the decimal expansion of 7 (3, 1, 4,
1,5,9,...).

(a) If you selected one number at random, from this set, what are the probabilities
of getting each of the 10 digits?

(b) What is the most probable digit? What is the median digit? What is the
average value?

(c) Find the standard deviation for this distribution.

Problem 1.11 The needle on a broken car speedometer is free to swing, and
bounces perfectly off the pins at either end, so that if you give it a flick it is
equally likely to come to rest at any angle between 0 and 7.

(a) What is the probability density, p(8)? Hint: p(8)d6 is the probability that
the needle will come to rest between 6 and (8 +d6). Graph p(9) as a function
of 6, from —m/2 to 37 /2. (Of course, part of this interval is excluded, so p
is zero there.) Make sure that the total probability is 1.
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(b) Compute (), (§2), and o, for this distribution.

(c) Compute (sin@), (cos8), and (cos>8).

Problem 1.12 We consider the same device as the previous problem, but this time
we are interested in the x-coordinate of the needle point—that is, the “shadow,”
or “projection,” of the needle on the horizontal line.

(a) What is the probability density p(x)? Graph p(x) as a function of x, from
—2r to +2r, where r is the length of the needle. Make sure the total prob-
ability is 1. Hint: p(x)dx is the probability that the projection lies between
x and (x + dx). You know (from Problem 1.11) the probability that 6 is in
a given range; the question is, what interval dx corresponds to the inter-
val d6?

(b) Compute (x), (x?), and o, for this distribution. Explain how you could have
obtained these results from part (c) of Problem 1.11.

* xProblem 1.13 Buffon’s needle. A needle of length / is dropped at random onto a
sheet of paper ruled with parallel lines a distance / apart. What is the probability
that the needle will cross a line? Hint: Refer to Problem 1.12.

Problem 1.14 Let P,,(#) be the probability of finding a particle in the range
(a < x <b), at time 1.

(a) Show that
dP,; ‘
d—;'l =J(a.t)— J(b.1).

where

Jx.t) = i (\P

2m

Y 7 el
ax dx

ov* 8\11)

What are the units of J(x. 1)? Comment: J is called the probability current,
because it tells you the rate at which probability is “flowing” past the point
x. If P, () is increasing, then more probability is flowing into the region at
one end than flows out at the other.

(b) Find the probability current for the wave function in Problem 1.9. (This is
not a very pithy example, I'm afraid; we’ll encounter more substantial ones
in due course.)
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* xProblem 1.15 Suppose you wanted to describe an unstable particle, that spon-
taneously disintegrates with a “lifetime” r. In that case the total probability of
finding the particle somewhere should not be constant, but should decrease at
(say) an exponential rate:

+o0
P(r)sf W (x, )|>dx =e'/7.

—0C

A crude way of achieving this result is as follows. In Equation 1.24 we tacitly
assumed that V (the potential energy) is real. That is certainly reasonable, but it
leads to the *“conservation of probability™ enshrined in Equation 1.27. What if we
assign to V an imaginary part:

V=VW-ITl,

where V) is the true potential energy and I is a positive real constant?

(a)

(b)

Show that (in place of Equation 1.27) we now get

dP 2T
— = ——P.
dt h

Solve for P(t), and find the lifetime of the particle in terms of I.

Problem 1.16 Show that

d o0

for any two (normalizable) solutions to the Schrédinger equation, W; and W».

Problem 1.17 A particle is represented (at time r = 0) by the wave function

W(x,0) = Aa? —x?). if —a <x < +a.
1o, otherwise.

Determine the normalization constant A.

What is the expectation value of x (at time 1 = 0)?

What is the expectation value of p (at time r = 0)? (Note that you cannot
get it from p = md(x)/dt. Why not?)

Find the expectation value of x?.
Find the expectation value of p2.

Find the uncertainty in x (oy).
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(g) Find the uncertainty in p (o).

(h) Check that your results are consistent with the uncertainty principle.

Problem 1.18 In general, quantum mechanics is relevant when the de Broglie
wavelength of the particle in question (#/p) is greater than the characteristic size
of the system (d). In thermal equilibrium at (Kelvin) temperature 7', the average
kinetic energy of a particle is

ﬁ = EkBT
2m 2
(where kg is Boltzmann’s constant), so the typical de Broglie wavelength is
A= —h— [1.41]

The purpose of this problem is to anticipate which systems will have to be treated
quantum mechanically, and which can safely be described classically.

(a) Solids. The lattice spacing in a typical solid is around d = 0.3 nm. Find the
temperature below which the free!8 electrons in a solid are quantum mechan-
ical. Below what temperature are the nuclei in a solid quantum mechanical?
(Use sodium as a typical case.) Moral: The free electrons in a solid are
always quantum mechanical; the nuclei are almost never quantum mechani-
cal. The same goes for liquids (for which the interatomic spacing is roughly
the same), with the exception of helium below 4 K.

(b) Gases. For what temperatures are the atoms in an ideal gas at pressure P
quantum mechanical? Hint: Use the ideal gas law (PV = NkgT) to deduce
the interatomic spacing. Answer: T < (1/kg)(h*/3m)3/° P3/3. Obviously
(for the gas to show quantum behavior) we want m to be as small as possible.
and P as large as possible. Put in the numbers for helium at atmospheric
pressure. Is hydrogen in outer space (where the interatomic spacing is about
1 cm and the temperature is 3 K) quantum mechanical?

'$1n a solid the inner electrons are attached to a particular nucleus. and for them the relevant
size would be the radius of the atom. But the outermost electrons are not attached. and for them the
relevant distance is the lattice spacing. This problem pertains to the ourer electrons.



CHAPTER 2

TIME-INDEPENDENT
SCHRODINGER EQUATION

2.1 STATIONARY STATES

In Chapter 1 we talked a lot about the wave function, and how you use it to
calculate various quantities of interest. The time has come to stop procrastinating,
and confront what is, logically, the prior question: How do you get W(x.t) in the
first place? We need to solve the Schrodinger equation,

oW K2 92w
at  2m 9x?

+ VU, [2.1]

for a specified potential! V(x.r). In this chapter (and most of this book) I shall
assume that V is independent of t. In that case the Schrédinger equation can be
solved by the method of separation of variables (the physicist’s first line of attack
on any partial differential equation): We look for solutions that are simple products,

W(x.1) = P (x)@t). [2.2]

where ¢ (lower-case) is a function of x alone, and ¢ is a function of # alone. On
its face, this is an absurd restriction, and we cannot hope to get more than a tiny

It is tiresome to keep saying “polential energy function.” so most people just call V the
“potential.” cven though this invites occasional conlusion with electric potential. which is actually
potential energy per unit charge.

24
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subset of all solutions in this way. But hang on, because the solutions we do obtain
turn out to be of great interest. Moreover (as is typically the case with separation
of variables) we will be able at the end to patch together the separable solutions
in such a way as to construct the most general solution.

For separable solutions we have

o dp 'V d*y

Bt dr’  9x%2 dxz(p

(ordinary derivatives, now), and the Schrodinger equation reads

do h* d*y
hy— = ———p+ Vyo.
thy dt omdx2? +Vye

h=— = ————— 4V [2.3]

Now, the left side is a function of ¢ alone, and the right side is a function of
x alone.’ The only way this can possibly be true is if both sides are in fact
constant —otherwise, by varying t, I could change the left side without touching
the right side, and the two would no longer be equal. (That’s a subtle but crucial
argument, so if it's new to you, be sure to pause and think it through.) For reasons
that will appear in a moment, we shall call the separation constant E. Then

L lde
m(pdr = F,
or
do I1E
—_ = ——0, 2.4
dt h(p‘ [24]
and
h 1 d*y
———— 4+ V =F,
2m Y dx? + '
or
h2 d2w
———— 4+ V¥ = EY. 2.5
2md.x2+ 4 4 (23]

Separation of variables has turned a partial differential equation into two ordi-
nary differential equations (Equations 2.4 and 2.5). The first of these (Equation 2.4)

2Note that this would nor be true if V were a function of 7 as well as x.
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is easy to solve (just multiply through by dt and integrate); the general solution is
C exp(—i Et /h), but we might as well absorb the constant C into ¥ (since the quantity
of interest is the product ¥¢). Then

Q@) = e TEIN, [2.6]

The second (Equation 2.5) is called the time-independent Schrodinger equation;
we can go no further with it until the potential V (x) is specified.

The rest of this chapter will be devoted to solving the time-independent
Schroédinger equation, for a variety of simple potentials. But before I get to
that you have every right to ask: What's so great about separable solutions?
After all, most solutions to the (time dependent) Schrodinger equation do not
take the form ¥ (x)@(t). I offer three answers—two of them physical, and one
mathematical:

1. They are stationary states. Although the wave function itself,

W(x, 1) =y e B0, [2.7]
does (obviously) depend on t, the probability density,
(W 0x, P = W = et By e~ E = |y 2, [2.8]

does not —the time-dependence cancels out.> The same thing happens in calculat-
ing the expectation value of any dynamical variable; Equation 1.36 reduces to

h d
i dx

(Q(x, p)) =f\ﬁ*Q (x, )wdx. [2.9]

Every expectation value is constant in time; we might as well drop the factor ¢(t)
altogether, and simply use ¥ in place of W. (Indeed, it is common to refer to V¥ as
“the wave function,” but this is sloppy language that can be dangerous, and it is
important to remember that the true wave function always carries that exponential
time-dependent factor.) In particular, (x) is constant, and hence (Equation 1.33)
(p) = 0. Nothing ever happens in a stationary state.

2. They are states of definite total energy. In classical mechanics, the total
energy (kinetic plus potential) is called the Hamiltonian:

Hepy= 2
(v, p) = 2=+ V(). [2.10]

3For normalizable solutions, E must be real (see Problem 2.1(a)).
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The corresponding Hamiltonian operator, obtained by the canonical substitution
p — (h/i)(3/8x), is therefore*
- h* 9

H=———4+VXx). 2,11
om ot ) 2.11]

Thus the time-independent Schrédinger equation (Equation 2.5) can be written
Ay = EY, [2.12]

and the expectation value of the total energy is

(H):f¢*ﬁ¢d.x=5f|¢|2dx=Ef|\1/124x=15. [2.13]
(Notice that the normalization of W entails the normalization of {.) Moreover,
H*y = H(HY) = H(EY) = E(Hy) = E%y,
and hence
(H?) = fwﬁ%y dx = Ezf lv|*dx = E>.
So the variance of H 1is
of = (H*) — (H)>=E>— E?=0. [2.14]

But remember, if 0 = 0, then every member of the sample must share the same
value (the distribution has zero spread). Conclusion: A separable solution has the
property that every measurement of the total energy is certain to return the value
E. (That’s why I chose that letter for the separation constant.)

3. The general solution is a linear combination of separable solutions. As
we’re about to discover, the time-independent Schrédinger equation (Equation 2.5)
yields an infinite collection of solutions (y1(x), ¥2(x), ¥3(x),...), each with
its associated value of the separation constant (E;, E;, E3,...); thus there is a
different wave function for each allowed energy:

W (x, 1) = Y @)e EL Wy (x, 1) = Y (x)e B

Now (as you can easily check for yourself) the (time-dependent) Schrddinger
equation (Equation 2.1) has the property that any linear combination® of solutions

*Whenever confusion might arise. I'll put a “hat” (%) on the operator, to distinguish it from the
dynamical variable it represents.

5 A linear combination of the functions fj(z). fa(z). ... is an expression of the form
f@O=ah@+aph@+: .

where ¢.¢5. ... are any (complex) constants.
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is itself a solution. Once we have found the separable solutions, then, we can
immediately construct a much more general solution, of the form

o0
V(x.1) =) e (e BN, [2.15]

n=|

It so happens that every solution to the (time-dependent) Schrédinger equation
can be written in this form—it is simply a matter of finding the right constants
(c1, c2. ...) so as to fit the initial conditions for the problem at hand. You'll see
in the following sections how all this works out in practice, and in Chapter 3 we’ll
put it into more elegant language, but the main point is this: Once you’ve solved
the time-independent Schridinger equation, you're essentially done; getting from
there to the general solution of the time-dependent Schrédinger equation is, in
principle, simple and straightforward.

A lot has happened in the last four pages, so let me recapitulate, from a
somewhat different perspective. Here's the generic problem: You're given a (time-
independent) potential V(x), and the starting wave function ¥ (x, 0); your job is
to find the wave function, W (x, t), for any subsequent time 7. To do this you must
solve the (time-dependent) Schrodinger equation (Equation 2.1). The strategy® is
first to solve the time-independent Schrédinger equation (Equation 2.5); this yields,
in general, an infinite set of solutions (¥; (x), ¥2(x), ¥3(x). ...), each with its own
associated energy (E;, Ej, E3,...). To fit ¥(x,0) you write down the general
linear combination of these solutions:

o0
W(x,0) =Y cp Yulx): [2.16]

n=1

the miracle is that you can always match the specified initial state by appropriate
choice of the constants ¢, ¢2, ¢3, ... . To construct W(x, t) you simply tack onto
each term its characteristic time dependence, exp(—i E, 1 /h):

oo 0
V1) =) cntu(e BT = 3 e, Wy (x, 1), [2.17]

n=1 n=1

The separable solutions themselves,

W, (x, 1) = Py (x)e Ent/h, [2.18]

60ccasionally you can solve the time-dependent Schrédinger equation without recourse to sep-
aration of variables—see. for instance. Problems 2.49 and 2.50. Bul such cases are extremely rarc.



Section 2.1: Stationary States 29

are stationary states, in the sense that all probabilities and expectation values are
independent of time, but this property is emphatically not shared by the general
solution (Equation 2.17); the energies are different, for different stationary states,
and the exponentials do not cancel, when you calculate | W2,

Example 2.1 Suppose a particle starts out in a linear combination of just rwo
stationary states:

V(x.0) = c1¢¥1(x) + a2 (x).

(To keep things simple I'll assume that the constants ¢, and the states iy, (x) are
real.) What is the wave function W (x. t) at subsequent times? Find the probability
density, and describe its motion.

Solution: The first part is easy:
W(x, 1) =y (@)e BV 4 ooy (x)e B2/
where E| and E; are the energies associated with i) and . It follows that

(W (x,N? = (191’ B 4 carpel By ey e PB4 o yrpe B2/

= ¥ + 3¥3 + 2cicay1¥a cos[(Ey — Ent/h).

(I used Euler’s formula, expif = cos8 + i sin8, to simplify the result.) Evidently
the probability density oscillates sinusoidally, at an angular frequency (E; — E)/h;
this is certainly not a stationary state. But notice that it took a linear combination
of states (with different energies) to produce motion.”

*Problem 2.1 Prove the following three theorems:

(a) For normalizable solutions, the separation constant E must be real. Hint:
Write E (in Equation 2.7) as Eg + iI" (with Eg and I' real), and show that
if Equation 1.20 is to hold for all #, I must be zero.

(b) The time-independent wave function ¥ (x) can always be taken to be real
(unlike W (x. 1), which is necessarily complex). This doesn’t mean that every
solution to the time-independent Schrodinger equation is real; what it says
is that if you've got one that is not, it can always be expressed as a linear
combination of solutions (with the same energy) that are. So you might as
well stick to y’s that are real. Hint: If Y (x) satisfies Equation 2.5, for a
given E, so too does its complex conjugate, and hence also the real linear
combinations (¢ + ¥*) and i (Y — ¥*).

"This is nicely illustrated by an applet at the Web site http:/thorin.adnc.com/~topquark/
quantum/deepwellmain.html.
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(c) If V(x) is an even function (that is, V(—x) = V(x)) then ¥ (x) can always
be taken to be either even or odd. Hint: If i (x) satisfies Equation 2.5, for
a given E, so too does {¥(—x), and hence also the even and odd linear
combinations ¥ (x) ¥ (—x).

*xProblem 2.2 Show that E must exceed the minimum value of V(x), for every
normalizable solution to the time-independent Schrodinger equation. What is the
classical analog to this statement? Hint: Rewrite Equation 2.5 in the form

d*y _ 2m N _
= F[V(A) ETyr:

if E < Vmin, then ¥ and its second derivative always have the same sign —argue
that such a function cannot be normalized.

2.2 THE INFINITE SQUARE WELL

Suppose
0. if0<x<a,

00, otherwise [2.19]

Vix) = {

(Figure 2.1). A particle in this potential is completely free, except at the two ends
(x = 0 and x = ¢), where an infinite force prevents it from escaping. A classical
model would be a cart on a frictionless horizontal air track, with perfectly elastic
bumpers—it just keeps bouncing back and forth forever. (This potential is artifi-
cial, of course, but I urge you to treat it with respect. Despite its simplicity—or
rather, precisely because of its simplicity—it serves as a wonderfully accessi-
ble test case for all the fancy machinery that comes later. We’ll refer back to it
frequently.)

V(x) A

> FIGURE 2.1: The infinite square well poten-
a X tial (Equation 2.19).
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Outside the well, ¥ (x) = 0 (the probability of finding the particle there is
zero). Inside the well, where V = 0, the time-independent Schriodinger equation
(Equation 2.5) reads

h2 dZw
——— = FEY, 2.2
2m dx? v (2.20]
or 7
72 = —k“y. where k = PR [2.21]

(By writing it in this way, I have tacitly assumed that £ > 0; we know from
Problem 2.2 that E < 0 won’t work.) Equation 2.21 is the classical simple har-
monic oscillator equation; the general solution is

W(x) = Asinkx + B coskx, [2.22]

where A and B are arbitrary constants. Typically, these constants are fixed by the
boundary conditions of the problem. What are the appropriate boundary con-
ditions for ¥ (x)? Ordinarily, both W and dy/dx are continuous, but where the
potential goes to infinity only the first of these applies. (I'll prove these boundary
conditions, and account for the exception when V = oo, in Section 2.5; for now I
hope you will trust me.)

Continuity of ¥ (x) requires that

¥ (0) = y¥(a) =0. [2.23]

so as to join onto the solution outside the well. What does this tell us about A and
B? Well,

¥ (0) = Asin0+ BcosO =B,

so B =0, and hence
¥ (x) = Asinkx. [2.24]

Then ¥ (a) = Asinka, so either A = 0 (in which case we’re left with the triv-
ial—non-normalizable—solution ¥ (x) = 0), or else sinka = 0, which means
that

ka=0,Ltn 27, *3m, ... [2.25]

But k¥ = 0 is no good (again, that would imply ¥ (x) = 0), and the negative

solutions give nothing new, since sin(—#) = —sin(8) and we can absorb the
minus sign into A. So the distinct solutions are

ky=—. withn=1,23, ... [2.26]
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vy(X) 4 Wa(X) 4 Wa(x) 4

> \ >
a x \/éx \/ax

FIGURE 2.2: Thefirst threestationary states of the infinite square well (Equation 2.28).

Curiously, the boundary condition at x = a does not determine the constant
A, but rather the constant k, and hence the possible values of E:

hzk,z, n2mw2h?

E = .
" 2m 2ma?

[2.27]

In radical contrast to the classical case, a quantum particle in the infinite square
well cannot have just any old energy—it has to be one of these special allowed
values.® To find A, we normalize y:

N S 2 d 5 2
f |A}”sin®(kx) dx = IAI“E =1, so |A]"=-.
0 a

This only determines the magnirude of A, but it is simplest to pick the positive real
root: A = +/2/a (the phase of A carries no physical significance anyway). Inside
the well, then, the solutions are

2 . /nm
Y (x) = \/; sin (TX) . [2.28]

As promised, the time-independent Schrodinger equation has delivered an
infinite set of solutions (one for each positive integer n). The first few of these are
plotted in Figure 2.2. They look just like the standing waves on a string of length a;
Y1, which carries the lowest energy, is called the ground state, the others, whose
energies increase in proportion to n2, are called excited states. As a collection, the
functions ¥, (x) have some interesting and important properties:

1. They are alternately even and odd, with respect to the center of the well:
¥ is even, Y7 is odd, Y3 is even, and so on.?

8Notice that the quantization of energy emerged as a rather technical consequence of the bound-
ary conditions on solutions to the time-independent Schrédinger equation.

9To make this symmeltry more apparent. some authors center the well at the origin (running it
from —a to +a). The even functions are then cosines. and the odd ones are sines. See Problem 2.36.



Section 2.2: The Infinite Square Well 33
2. As you go up in energy, each successive state has one more node (zero-
crossing): ¥} has none (the end points don’t count), ¥, has one, 3 has two, and

SO on.
3. They are mutually orthogonal, in the sense that

f Y () Y (x)dx =0, [2.29]

whenever m # n. Proof:

2 [ ,
f Ym (X)) Y () dx = — f sin (i"—”-'c) sin (ﬂ\) dx
aJjo a a
1 f” [ (m —n ) (m +n >:|
= cos X | —cos X dx
aJo a ) a

1 o (m—n 1 . (m+n
= sin X | — —sin TX
(m—n)m a (m+n)m a

1 {sin[(m, —n)m] 3 sin[(m 4+ n)m] } -0

T (m—n) (m 4+ n)

a

0

Note that this argument does nor work if m = n. (Can you spot the point at which
it fails?) In that case normalization tells us that the integral is 1. In fact, we can
combine orthogonality and normalization into a single statement:'0

f Vi (x)*% (x) dx = S;pn. [2.30]

where §,,,, (the so-called Kronecker delta) is defined in the usual way,

8y = { 0, ifms+#n; (2.31]

1. if m=n.

We say that the y/'s are orthonormal.
4. They are complete, in the sense that any other function, f(x), can be
expressed as a linear combination of them:

flx)= Z Ca¥u(x) = \/gz cy Sin (%X) . [2.32]
]

n=I n=

\01n this casc the Y¥'sare real, so the * on ¥, is unnecessary. but for future purposes it’s a good
idea to get in the habit of putting it there.
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I'm not about to prove the completeness of the functions sin (nmx/a), but if you’ve
studied advanced calculus you will recognize that Equation 2.32 is nothing but the
Fourier series for f(x), and the fact that “any” function can be expanded in this
way is sometimes called Dirichlet’s theorem.!!

The coefficients ¢, can be evaluated—for a given f(x)—by a method I call
Fourier’s trick, which beautifully exploits the orthonormality of {y,}: Multiply
both sides of Equation 2.32 by ¥, (x)*, and integrate.

f Y (-X)*f(x) dx = Z Cn / VY (-\')*lbn (x)dx = Z CnOmn = Cm- [2.33]

n=l\ n=l|

(Notice how the Kronecker delta kills every term in the sum except the one for
which n = m.) Thus the nth coefficient in the expansion of f(x) is'?

Cp = f U (X)* f(x)dx. [2.34]

These four properties are extremely powerful, and they are not peculiar to the
infinite square well. The first is true whenever the potential itself is a symmetric
function; the second is universal, regardless of the shape of the potential.!* Orthog-
onality is also quite general—I'll show you the proof in Chapter 3. Completeness
holds for all the potentials you are likely to encounter, but the proofs tend to be
nasty and laborious; I'm afraid most physicists simply assume completeness, and
hope for the best.

The stationary states (Equation 2.18) of the infinite square well are evidently

2 S T 2
\I/,, (.X', T) — \/;s.in (”C_JIT ) e—l(n a-h/2ma )I' [235]

I claimed (Equation 2.17) that the most general solution to the (time-dependent)
Schrédinger equation is a linear combination of stationary states:

oG
2 d 2o 2
WG n) = Y ey = sin (S enf 07 et [2.36]
a "

n=l\

ISee, for example, Mary Boas, Mathematical Methods in the Physical Sciences, 2d cd. (New
York: John Wiley. 1983), p. 313: f(x) can even have a finite number of finite discontinuities.

121t doesn’t matter whether you use m or n as the “dummy index™ here (as long as you are
consistent on the two sides of the equation. of course); wharever letier you usc. it just stands for “any
positive integer.”

Bsee. for example, John L. Powell and Bernd Crasemann, Quantum Mechanics (Addison-
Wesley, Reading. MA, 1961). p. 126.
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(If you doubt that this is a solution, by all means check it!) It remains only for
me to demonstrate that I can fit any prescribed initial wave function, ¥ (x. 0), by
appropriate choice of the coefficients ¢,:

Y(x,0) = Z Cn¥n (x).

n=l1

The completeness of the ¥’s (confirmed in this case by Dirichlet’s theorem) guar-
antees that I can always express W(x.0) in this way, and their orthonormality
licenses the use of Fourier’s trick to determine the actual coefficients:

2 a
ey = \/j / sin (ﬂx) W(x.0) dx. [2.37]
a Jo a

That does it: Given the initial wave function, ¥ (x.0), we first compute the
expansion coefficients ¢, , using Equation 2.37, and then plug these into Equation 2.36
to obtain W (x. 7). Armed with the wave function, we are in a position to compute any
dynamical quantities of interest, using the procedures in Chapter 1. And this same
ritual applies to any potential —the only things that change are the functional form
of the ¥’s and the equation for the allowed energies.

Example 2.2 A particle in the infinite square well has the initial wave function
Y(x.0) = Ax(a —x). (0 <x <a).

for some constant A (see Figure 2.3). Outside the well, of course, ¥ = 0. Find
W(x.1).

A W(x, 0)

xY

a

FIGURE 2.3: The starting wave function in Example 2.2.
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Solution: First we need to determine A, by normalizing W (x. 0):

a 2 5 [4 5 7 7“5
1 =/ IW(x.0)|"dx = |A|"/ xa —x)dx =|A|"—,
0 0 30
SO
30
A=,—.
aS

The nth coefficient is (Equation 2.37)
Cy = \/g/()a sin (%\) /z:g.r(cl —Xx)dx
= 2;/31_5 [a /Ou X sin (%[—\) dx — /Oa x2sin (%r) dx]
= 2:1/31—5 {a [(’:—;)2 sin (%\) — ;l—:[ cos (Eg—\)jl :
_ [2 (%)2\ sin (%\) _ (”7:’:7/[6/1;2): 2 cos (%r)]
_2Vis [ a’ 3 (nm)* =2

3 ——cos(nm) +a
a-

nm (nm)3

a
0}

cos(O)]

cos(nm) + a’ (

nm)3
4/15

- (nm)?3

[cos(0) — cos(nm)]

if 1 is even.

0,
_{ 8+/15/(nm)?. if n is odd.

Thus (Equation 2.36):

Yx.t)= ﬂ (E) l sin (E\) e-—inzrrzm/2maz.
n=1.3.5

a \mw n3 a

Loosely speaking, ¢, tells you the “amount of y, that is contained in W.”
Some people like to say that |c,|? is the “probability of finding the particle in the
nth stationary state,” but this is bad language; the particle is in the state WV, not
W, and, anyhow, in the laboratory you don’t “find a particle to be in a particular
state”—you measure some observable, and what you get is a number. As we'll
see in Chapter 3, what |c,|* tells you is the probability that a measurement of the
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energy would vield the value E, (a competent measurement will always return one
of the “allowed” values—hence the name—and |c,|? is the probability of getting
the particular value E).

Of course, the sum of these probabilities should be 1,

oC
Y el =1 [2.38]

n=l1

Indeed, this follows from the normalization of W (the c,’s are independent of time,
so I'm going to do the proof for + = 0; if this bothers you, you can easily generalize
the argument to arbitrary 7).

1=/|\1’(x.0)|2dx=/< mem(x)) (ch%(-\‘)) dx
1

m= n=I

= Z Z C;: Cn / Y (-\')*Wn (x)dx

m=|n=l1
o0 0 o0
* 2
= E E C,ncnamn = E lcnl”.
n=1m=l n=I

(Again, the Kronecker delta picks out the term m = n in the summation over m.)
Moreover, the expectation value of the energy must be

(H) = leul*Ey. [2.39]

n=|\

and this too can be checked directly: The time-independent Schrodinger equation
(Equation 2.12) says
Hyy = Ey¥y. [2.40]

SO

(H) = / W*HWY dx = / (Zcmwm)*ﬂ (Zc,,w,,)d_x
= Z ZC::C"EH f ﬁ,\ﬁn dx = Z |C,,|2E,,.

Notice that the probability of getting a particular energy is independent of time, and
s0, d fortiori, is the expectation value of H. This is a manifestation of conservation
of energy in quantum mechanics.
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Example 2.3 In Example 2.2 the starting wave function (Figure 2.3) closely re-
sembles the ground state Y| (Figure 2.2). This suggests that |c; |? should dominate,
and in fact "

,
8V15\"

IC1I2=< . ) = 0.998555.... .
n"~

The rest of the coefficients make up the difference: !

0 2 oC
, (815 1
> leal =< 0 ) > &=L

n=|\ n=1.3.5....

The expectation value of the energy, in this example, is

o 2 o e B | oC i
815\ n2m2h*>  480h? 1 5h?

3.3 Y2 7l : 2
n-im Zmda a'ma n ma
n=I1.3.5.... n=1.3.5....

As one might expect, it is very close to E| = w2h?/2ma®—slightly larger, because
of the admixture of excited states.

Problem 2.3 Show that there is no acceptable solution to the (time-independent)
Schrédinger equation for the infinite square well with E = 0 or E < 0. (This is a
special case of the general theorem in Problem 2.2, but this time do it by explicitly
solving the Schrédinger equation, and showing that you cannot meet the boundary
conditions.)

«Problem 2.4 Calculate (x), (x2), (p), (p?), oy, and op, for the nth stationary state
of the infinite square well. Check that the uncertainty principle is satisfied. Which
state comes closest to the uncertainty limit?

xProblem 2.5 A particle in the infinite square well has as its initial wave function
an even mixture of the first two stationary states:

W(x.0) = A[Y1(x) + Y2 (x)].

14You can look up the series

1 i i 70
+...=._

16736 7 50 960
and

LI N B

4 3§54 96

in math tables. under “Sums of Reciprocal Powers™ or “Riemann Zeta Function.”
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(a) Normalize W(x,0). (That is, find A. This is very easy, if you exploit the
orthonormality of | and vy». Recall that, having normalized ¥ at t = 0,
you can rest assured that it srays normalized—if you doubt this, check it
explicitly after doing part (b).)

(b) Find W(x,t) and |W(x,1)|2. Express the latter as a sinusoidal function of
time, as in Example 2.1. To simplify the result, let w = 72k /2ma?.

(c) Compute (x). Notice that it oscillates in time. What is the angular frequency
of the oscillation? What is the amplitude of the oscillation? (If your amplitude
is greater than a/2, go directly to jail.)

(d) Compute (p). (As Peter Lorre would say, “Do it ze kveek vay, Johnny!™)

(e) If you measured the energy of this particle, what values might you get, and
what is the probability of getting each of them? Find the expectation value
of H. How does it compare with E| and E;?

Problem 2.6 Although the overall phase constant of the wave function is of no
physical significance (it cancels out whenever you calculate a measurable quantity),
the relative phase of the coefficients in Equation 2.17 does matter. For example,
suppose we change the relative phase of ¥ and y; in Problem 2.5:

W(x,0) = A[Y1(x) + e PP ()],
where ¢ is some constant. Find W(x, r), |¥(x, )%, and (x), and compare your

results with what you got before. Study the special cases ¢ = n/2 and ¢ = 7.
(For a graphical exploration of this problem see the applet in footnote 7.)

«Problem 2.7 A particle in the infinite square well has the initial wave function!’

Ax, 0<x<a/2,
Ala—x). a/2<x<a.

Y(x.0) = {

(a) Sketch W(x.0), and determine the constant A.
(b) Find W (x.1).

I35There is no restriction in principle on the shape of the starting wave function. as long
as il is normalizable. In particular, W(r.0) need not have a continuous derivative—in fact, it
doesn’t even have to be a continuous function. However. if you uy lo calculatc {H) using
[ W(x.0)*HW(x, 0)dx in such a case, you may encounter technical difficulties. because the second
derivative of W (. 0) is ill-defined. It works in Problem 2.9 because the discontinuities occur at the end
points, where the wave function is zero anyway. In Problem 2.48 you'll see how lo manage cases like
Problem 2.7.
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(c) What is the probability that a measurement of the energy would yield the
value E|?

(d) Find the expectation value of the energy.

Problem 2.8 A particle of mass m in the infinite square well (of width a) starts
out in the left half of the well, and is (at + = 0) equally likely to be found at any
point in that region.

(a) What is its initial wave function, ¥ (x, 0)? (Assume it is real. Don’t forget
to normalize it.)

(b) What is the probability that a measurement of the energy would yield the
value w2h%/2ma??

Problem 2.9 For the wave function in Example 2.2, find the expectation value of
H, at time t = 0, the *“old fashioned” way:

(H) =f\p(.x.0)*1§q1(x,0)dx.

Compare the result obtained in Example 2.3. Note: Because (H) is independent of
time, there is no loss of generality in using r = 0.

2.3 THE HARMONIC OSCILLATOR

The paradigm for a classical harmonic oscillator is a mass s attached to a spring
of force constant k. The motion is governed by Hooke’s law,

d?x
F=—kx= ’"F

(ignoring friction), and the solution is

x(t) = A sin(wt) + B cos(wt),

w= ﬁ [2.41]
"

is the (angular) frequency of oscillation. The potential energy is

where

1
Vi(x) = 5kx"-; [2.42]

its graph is a parabola.



Section 2.3: The Harmonic Oscillator 41

V(x) A

Y

FIGURE 2.4: Parabolic approximation (dashed curve) to an arbitrary potential, in
the neighborhood of a local minimum.

Of course, there’s no such thing as a perfect harmonic oscillator—if you
stretch it too far the spring is going to break, and typically Hooke’s law fails
long before that point is reached. But practically any potential is approximately
parabolic, in the neighborhood of a local minimum (Figure 2.4). Formally, if we
expand V (x) in a Taylor series about the minimum:

1
V(x) = V(x0) + V'(x0)(x = x0) + 2 V" (xo)(x — x0)2 4,

subtract V (xg) (you can add a constant to V (x) with impunity, since that doesn’t
change the force), recognize that V’(x¢) = 0 (since xg is a minimum), and drop the
higher-order terms (which are negligible as long as (x — xg) stays small), we get

1 y
V(x) = EV”(xo)(.x — x0)".

which describes simple harmonic oscillation (about the point xp), with an effective
spring constant k = V”(xg).'® That’s why the simple harmonic oscillator is so
important: Virtually any oscillatory motion is approximately simple harmonic, as
long as the amplitude is small.

The quantum problem is to solve the Schrédinger equation for the potential

1
V(x) = 5mwzxz [2.43]

(it is customary to eliminate the spring constant in favor of the classical frequency,
using Equation 2.41). As we have seen, it suffices to solve the time-independent
Schrodinger equation:

rdy 1,
T el + Emw x“Yy = Ey. [2.44]

6Note that V" (xg) = 0. since by assumption xq is a minimum. Only in the rare case V" (xg) = 0
is the oscillation not even approximately simple harmonic.
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In the literature you will find two entirely different approaches to this problem.
The first is a straightforward “brute force” solution to the differential equation,
using the power series method: it has the virtue that the same strategy can be
applied to many other potentials (in fact, we’ll use it in Chapter 4 to treat the
Coulomb potential). The second is a diabolically clever algebraic technique, using
so-called ladder operators. I'll show you the algebraic method first, because it is
quicker and simpler (and a lot more fun);'? if you want to skip the power series
method for now, that’s fine, but you should certainly plan to study it at some
stage.

2.3.1 Algebraic Method

To begin with, let’s rewrite Equation 2.44 in a more suggestive form:

5}—’;[1)2 + (mwx)z]w = Evy. [2.45]

where p = (h/i)d/dx is, of course, the momentum operator. The basic idea is to

factor the Hamiltonian,

1
H = —[p* + (mwx)?). [2.46]
2m
If these were mumbers, it would be easy:
u? + vt = (iu +v)(—iu + v).

Here, however, it’s not quite so simple, because p and x are operators, and oper-
ators do not, in general, commute (xp is not the same as px). Still, this does
motivate us to examine the quantities

a+ = m (Fip + mowx) [2.47]

(the factor in front is just there to make the final results look nicer).
Well, what is the product a_a?

|
ad_ay = ——(ip+mowx)(—ip + mwx)
2hmw

1
— [P2 + (m.a)x)2 —imw(xp — px)].
2himw

P7We'Il encounter some of the same strategies in the theory of angular momentum (Chapter 4),
and the technique generalizes to a broad class of potentials in super-symmetric quantum mechanics
(sce. for example. Richard W. Robinett, Quantum Mechanics. (Oxford U.P., New York, 1997). Section
14.4).
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As anticipated, there’s an extra term, involving (xp — px). We call this the com-
mutator of x and p; it is a measure of how badly they fail to commute. In general,
the commutator of operators A and B (written with square brackets) is

[A.B]= AB — BA. [2.48]

In this notation,

2 NS
w[p + (mwx)?] > [x. p]. [2.49]

We need to figure out the commutator of x and p. Warning: Operators are
notoriously slippery to work with in the abstract, and you are bound to make
mistakes unless you give them a “test function,” f(x), to act on. At the end you
can throw away the test function, and you’ll be left with an equation involving the
operators alone. In the present case we have:

hd d d .
[x. plf(x) = Af——(f)————( xf) r—f—x—f— = ih f(x).
i \Udx dx
[2.50]
Dropping the test function, which has served its purpose,
[x, p]=ih. [2.51]

This lovely and ubiquitous result is known as the canonical commutation rela-
tion.'8
With this, Equation 2.49 becomes

1 1
_ayr = —H+ - 2.52
a-ar=—H+ . [2.52]

or ,
H = hw (a_a+ - 5) . [2.53]

Evidently the Hamiltonian does not factor perfectly—there’s that extra —1/2 on the
right. Notice that the ordering of a4+ and a_ is important here; the same argument.
with a4 on the left, yields
: H : [2.54]
ara- = —H — —. .
* ho 2
In particular,
l[a—,ay] = 1. [2.55]

'81n a deep sense all of the mysteries of quantum mechanics can be traced to the fact that position
and momentum do not commute. Indeed, some authors take the canonical commutation relation as an
axiom of the theory. and use it to derive p = (h/i)d/dx.
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So the Hamiltonian can equally well be written

H=ho (a+a_ + %) : [2.56]

In terms of a4, then, the Schrodinger equation'® for the harmonic oscillator takes
the form

ho (ata; T %) v =Ey [2.57]

(in equations like this you read the upper signs all the way across, or else the lower
signs).

Now, here comes the crucial step: I claim that if Y satisfies the Schrodinger
equation with energy E, (that is: Hy = Ev), then ar satisfies the Schrodinger
equation with energy (E + hw): H(ayr) = (E + hw)(a+¥). Proof:

H(a+y) = ho (a+a_ + %) (a+¥) =how ((1+cl_a+ + %a.,.) '

1 1
= hwa+ ((l_(l+ + 5) ¢ =d4 [ﬁa) (a_l_a_ +14 5) ¢1|

=ar(H+ ho)Y =ar(E+ hw)y = (E + ho)(ar ).

(I used Equation 2.55 to replace a_a+ by aya— + 1, in the second line. Notice
that whereas the ordering of ay+ and a— does matter, the ordering of a4 and
any constants—such as h, w, and E—does not; an operator commutes with any
constant.)

By the same token, a—y is a solution with energy (E — hw):

H(a-y) = ho (a_a+ — %) (a-y) = hwa_ (a.,.a_ — %) v

=a_ [ﬁw (a_a+ —-1- %) ¢:| =a_(H — ho)Y =a_(E — ho)y

= (E — hw)(a=).

Here, then, is a wonderful machine for generating new solutions, with higher and
lower energies—if we could just find one solution, to get started! We call a4
ladder operators, because they allow us to climb up and down in energy; a4 is
the raising operator, and «_ the lowering operator. The “ladder” of states is
illustrated in Figure 2.5.

1'm getting tired of writing “time-independent Schrdinger equation,” so when it’s clear from
the context which one I mean, I'll just call it the “Schrddinger equation.”
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FIGURE 2.5: The “ladder” of states for the harmonic oscillator.

But wait! What if I apply the lowering operator repeatedly? Eventually I'm
going to reach a state with energy less than zero, which (according to the general
theorem in Problem 2.2) does not exist! At some point the machine must fail.
How can that happen? We know that a_y is a new solution to the Schrddinger
equation, but there is no guarantee that it will be normalizable —it might be zero,
or its square-integral might be infinite. In practice it is the former: There occurs a
“lowest rung” (call it ) such that

a_yo = 0. [2.58]

We can use this to determine g(x):

1 d
— | h— + mwx =0,
V2hEmw ( dx ) Vo



46

Chapter 2 Time-Independent Schrédinger Equation

or
dyrg mw
— = ———x .
dx h Vo
This differential equation is easy to solve:
dyrng mo me -
— =—— [ xdx = Inyy=———x"+ constant,
Vo h Vo=

SO

e 2

Yo(x) = Ae" 2%

We might as well normalize it right away:

1 — |A|2 foo e—mw.\'z/ﬁ d.\' — |A|2 T[_h.
-0

mw
2
so A° = /mw/mh, and hence

1/4

new w2

Yo(x) = (’—1—) e” I
mh

[2.59]

To determine the energy of this state we plug it into the Schrodinger equation (in
the form of Equation 2.57), hiw(ay+a— + 1/2)y¥y = Egyy, and exploit the fact that

a_yro = 0: |
E() = Eha)

[2.60]

With our foot now securely planted on the bottom rung (the ground state of the
quantum oscillator), we simply apply the raising operator (repeatedly) to generate

the excited states,?? increasing the energy by Aw with each step:

Ya(x) = Ay ((l+)" Yo(x), with E, = (n + %) how,

[2.61]

where A, is the normalization constant. By applying the raising operator (repeat-
edly) to vy, then, we can (in principle) construct all’! the stationary states of

20In the case of the harmonic oscillator it is customary. for some reason, to depart from the usual
raclice, and number the states starting with n = 0, instead of n = 1. Obviously, the lower limit on the
p y

sum in a formula such as Equation 2.17 should be altered accordingly.

2I'Note that we obtain all the (normalizable) solutions by this procedure. For if there were some
other solution., we could generate from it a second ladder. by repeated application of the raising and
lowering operators. But the bottom rung of this new ladder would have to satisfy Equation 2.58, and
since that leads inexorably to Equation 2.59, the bottom rungs would be the same, and hence the two

ladders would in fact be identical.
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the harmonic oscillator. Meanwhile, without ever doing that explicitly, we have
determined the allowed energies.

Example 2.4 Find the first excited state of the harmonic oscillator.

Solution: Using Equation 2.61,

A d )(m.w)'/“ w2
(x) =Aa = —h— + mowx —_— e W~
V1) 14+ Y0 V2f1mw( dx mh

A mw 174 2mw —me 2
= A | — ‘ xXe W7
wh i

[2.62]

We can normalize it “by hand™:

2 x i 3
f iR dx = A, ’"‘”( ’"‘") f e~ dx = |42,

7\ h ) ) o

so, as it happens, A} = 1.

I wouldn’t want to calculate 59 this way (applying the raising operator fifty
times!), but never mind: In principle Equation 2.61 does the job—except for the
normalization.

You can even get the normalization algebraically, but it takes some fancy
footwork, so watch closely. We know that a + v, is proportional to ¥, +1,

a+¢n = Cn l”n+l . a_y, =d, Yn—1 [2.63]

but what are the proportionality factors, ¢, and d,,? First note that for “any”zz

functions f(x) and g(x),

> o0
f fflatg)dx = f (ax f)*gdx. [2.64]
—0

—0

(In the language of linear algebra, a is the hermitian conjugate of a4 .)
Proof:

T rarg)d Y Py (e d
At 8)dx = —=—= — + mwx ‘,
f_mf (a1g) thwf_mf (¢zdx m A)g N

220f course, the integrals must exist, and this means that f(x) and g(x) must go to zero at

*o0.
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and integration by parts takes [ f*(dg/dx)dx to — [(df/dx)*g dx (the boundary
terms vanish, for the reason indicated in footnote 22), so

o0 1 o d * oo
*(a dx= f [(i‘h— +m ) ] d. =f axf)*gdx.
./;oof (a:g)dx V2hmw J—x dx mwx)f| gdx _oc( =/)8

QED
In particular,

oG

f (aj:l”n)*(a:tl”n)dx = f (a;ai%)*% dx.

But (invoking Equations 2.57 and 2.61)

ara_y, =nyy,. a—apyy, = 4+ Dyy. [2.65]

SO

(o & OO0 oC
f (@) st dx = lcal? f Wnsr2dx = (n + 1) f 2 dx.
o0 -0 -0

f (V) () dx = dy 2 f W P dx = n f 2 dix.

.—x -_—

But since ¥, and y, +| are normalized, it follows that lenl? = n+1 and |d,|? = n,
and hence

a+yp =Vn+ 1y, a-y =\/77¢n—l- [2.66]
Thus

V=l Y= s = (@)

I = &4+Y0. -—\/i+l—\/§-+ 0:

] 3 _1 __ !
Y3 = ﬁa+¢_ ~/§-_2(a+) Yo. Y4 \/Zaﬂh s

and so on. Clearly

(a4+)* o,

1

=@ [2.67]

¢r: =

which is to say that the normalization factor in Equation 2.61 is A, = 1/+/n! (in
particular, A; = 1, confirming our result in Example 2.4).
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As in the case of the infinite square well, the stationary states of the harmonic
oscillator are orthogonal:

OO
f lb:; Yndx = Syp- [2.68]
-0

This can be proved using Equation 2.65, and Equation 2.64 twice—first moving
a+ and then moving a_:

0 20
f wr’rkx (ara_)yp,dx =n f 1,0:, Y, dx

00 o0
= f (a—w;n)*(a—l”n) dx = f (ata— Wrn)*lbn dx
%0 —oc

o0
=m f Vo dx.
— 00

Unless m = n, then, [ ¢}y, dx must be zero. Orthonormality means that we
can again use Fourier’s trick (Equation 2.34) to evaluate the coefficients, when we
expand W(x, 0) as a linear combination of stationary states (Equation 2.16), and
len|? is again the probability that a measurement of the energy would yield the
value E,.

Example 2.5 Find the expectation value of the potential energy in the nth state
of the harmonic oscillator.

Solution:

1 7.7 ] 2 e % 2
(V) = E-mw“x“ = Emw' n X Yndx.
—¢

There’s a beautiful device for evaluating integrals of this kind (involving powers

of x or p): Use the definition (Equation 2.47) to express x and p in terms of the
raising and lowering operators:

h [k
X = : (ay +a-). p=i ”"w((’+ —a-). [2.69]
2mw 2

2.

In this example we are interested in x

7 h
Y~ =
2mw

[(a+>2 +(aya-) + (a-ay) + @-)?)].
So

(V) = %“" f v [(a+)2+(a+a_)+(a_a+)+(a_)2] Y dx.
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But (a4)2y, is (apart from normalization) ¥,.2, which is orthogonal to ¥, and
the same goes for (a_)2,, which is proportional to ¥,,—2. So those terms drop
out, and we can usc Equation 2.65 to evaluate the remaining two:

h 1 1
(V) = —Zﬁ(n +n+1= Ehw (n -+ E) .
As it happens, the expectation value of the potential energy is exactly half the
total (the other half, of course, is kinetic). This is a peculiarity of the harmonic
oscillator, as we’ll see later on.

«Problem 2.10

(a) Construct ya(x).
(b) Sketch ¥, ¥, and V3.

(c) Check the orthogonality of g, ¥, and v, by explicit integration. Hint: If
you exploit the even-ness and odd-ness of the functions, there is really only
one integral left to do.

*Problem 2.11

(a) Compute (x), (p). (x2), and (p?), for the states ¥y (Equation 2.59) and ¥
(Equation 2.62), by explicit integration. Comment: In this and other problems
involving the harmonic oscillator it simplifies matters if you introduce the
variable & = /mw/fi x and the constant « = (mw/mh)'/4,

(b) Check the uncertainty principle for these states.

(c) Compute (T) (the average kinetic energy) and (V) (the average potential
energy) for these states. (No new integration allowed!) Is their sum what you
would expect?

xProblem 2.12 Find (x), (p), (x2), (p?), and (T), for the nth stationary state of the
harmonic oscillator, using the method of Example 2.5. Check that the uncertainty
principle is satisfied.

Problem 2.13 A particle in the harmonic oscillator potential starts out in the state
W(x.0) = A[3yY(x) + 4y (x)].

(a) Find A.
(b) Construct W(x, 1) and |¥(x. 1)|3.
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(c) Find (x) and (p). Don’t get too excited if they oscillate at the classical
frequency; what would it have been had I specified v, (x), instead of ¥ (x)?
Check that Ehrenfest’s theorem (Equation 1.38) holds for this wave function.

(d) If you measured the energy of this particle, what values might you get, and
with what probabilities?

Problem 2.14 A particle is in the ground state of the harmonic oscillator with
classical frequency w, when suddenly the spring constant quadruples, so &’ = 2w,
without initially changing the wave function (of course, ¥ will now evolve differ-
ently, because the Hamiltonian has changed). What is the probability that a mea-
surement of the energy would still return the value hiw/2? What is the probability
of getting hiw? [Answer: 0.943.]

2.3.2 Analytic Method
We return now to the Schrodinger equation for the harmonic oscillator,

h? d? 1
_%d% + Emwzxzw = E, [2.70]

and solve it directly, by the series method. Things look a little cleaner if we
introduce the dimensionless variable

£ = ,/'"%x; [2.71]

in terms of £ the Schrédinger equation reads

d>y 5
= — Ky, 2.72
e =& =K [2.72]
where K is the energy, in units of (1/2)hw:
2F
= —, [2.73]
hw

Our problem is to solve Equation 2.72, and in the process obtain the “allowed”
values of K (and hence of E).

To begin with, note that at very large & (which is to say, at very large x), &2
completely dominates over the constant K, so in this regime

d>y
deg?

which has the approximate solution (check it!)

~ £, [2.74]

V(E) ~ AeE 2 4 Bt [2.75]
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The B term is clearly not normalizable (it blows up as |x| — ©0); the physically
acceptable solutions, then, have the asymptotic form

Y& > (e 2 atlarge . [2.76]

This suggests that we “peel off” the exponential part,
V(E) = hE)e 2, [2.77]
23

in hopes that what remains, (&), has a simpler functional form than  (£) itself.
Differentiating Equation 2.77,

¥ _ (ﬁ _ 5,,) 0

dg — \dk
and
d*y d*h dh , 2
= — 28— £ — D} = /2.
dE? (déz édg + (§ )1>e :
so the Schrodinger equation (Equation 2.72) becomes
d*h dh
— —26— 4+ (K —-1h =0. 2.78
7 3 T + ( )h [2.78]

I propose to look for solutions to Equation 2.78 in the form of power series
o £.24
in &:°

hE) =ao+mb +at®+--- =) ajel. [2.79]
Jj=0

Differentiating the series term by term,

dh o° .
J—s =a; +2a & + 30382 4 ... = §l~0: jajgj—l‘
and
d*h 5 o - ;
ke 207 +2-3a3¢ +3-dask  +---= § :(1 + D(j +2)aj+28".

Jj=0

*3Note that although we invoked some approximations to motivare Equation 2.77. what tol-
lows is exacr. The device of stripping off the asymptotic bchavior is the standard first step in
the power serics method for solving differential equations—see, for example. Boas (footnote 11).
Chapter 12.

This is known as the Frobenius method for solving a differential equation. According to
Taylor's theorem. any rcasonably well-behaved function can be expressed as a power scries, so
Equation 2.79 ordinarily involves no loss of gencrality. For conditions on the applicability of the
method. see Boas (footnote 11) or George B. Arfken and Hans-Jurgen Weber, Mathematical Methods

for Physicists. Sth ed.. Academic Press. Orlando (2000). Section 8.5.
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Putting these into Equation 2.78, we find

oo

S [U + DG +2aj2 — 2jaj + (K — Daj] g7 =o. [2.80]
j=0

It follows (from the uniqueness of power series expansions®) that the coefficient
of each power of & must vanish,

and hence that )
Qj+1-K)
G+DG+2)
This recursion formula is entirely equivalent to the Schrddinger equation.
Starting with ag, it generates all the even-numbered coefficients:

djy2 = [2.81]

(1-K) (S—K)a (5—K)(1—-K)
= . = = ap.
=T Mm@ 24 o
and starting with «, it generates the odd coefficients:
. B-K) 4 (7—K)a (7—K)(3—K)a
13 = 1. = = .
3 6 ' “T 720 © 120 !

We write the complete solution as

h(€) = heven(§) + hoad (§). [2.82]

where

heven(§) = ag + a2€% + as&* + - -
is an even function of &, built on «g, and

Nodd(€) = a1 + az&> + as€> + - -

is an odd function, built on a;. Thus Equation 2.81 determines /1(£§) in terms of
two arbitrary constants (co and «a;)—which is just what we would expect, for a
second-order differential equation.

However, not all the solutions so obtained are normalizable. For at very large
J. the recursion formula becomes (approximately)

2
Ay =~ —qa;
j"l"; N j!
J

25Sce. for example. Arfken (footnote 24). Section 5.7.
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with the (approximate) solution
a; ~ ¢
TgaY

for some constant C, and this yields (at large £, where the higher powers dominate)

~ I 4in LIPS TIN
hE) ~CY (j/z)!s cy j!g cet.
Now, if /1 goes like exp(£?), then ¥ (remember  ?—that’s what we're trying to
calculate) goes like exp(£%/2) (Equation 2.77), which is precisely the asymptotic
behavior we didn’t want.?® There is only one way to wiggle out of this: For
normalizable solutions the power series must terminate. There must occur some
“highest” j (call it n), such that the recursion formula spits out a,2 = 0 (this will
truncate either the series /ioven OF the series /1544; the orher one must be zero from
the start: a; = 0 if n is even, and ay = O if n is odd). For physically acceptable
solutions, then, Equation 2.81 requires that

K=2n+1,

for some non-negative integer »1, which is to say (referring to Equation 2.73) that
the energy must be

1
E, = (n + 5) hw. forn=0.1,2..... [2.83]

Thus we recover, by a completely different method, the fundamental quantization
condition we found algebraically in Equation 2.61.

It seems at first rather surprising that the quantization of energy should
emerge from a technical detail in the power series solution to the Schrodinger
equation, but let’s look at it from a different perspective. Equation 2.70 has
solutions, of course, for any value of E (in fact, it has nvo linearly independent
solutions for every E). But almost all of these solutions blow up exponentially at
large x, and hence are not normalizable. Imagine, for example, using an E that
is slightly less than one of the allowed values (say, 0.49hw), and plotting the
solution (Figure 2.6(a)); the “tails” fly off to infinity. Now try an E slightly larger
(say, 0.51hw); the “tails” now blow up in the other direction (Figure 2.6(b)). As
you tweak the parameter in tiny increments from 0.49 to 0.51, the tails flip over
when you pass through 0.5—only at precisely 0.5 do the tails go to zero, leaving
a normalizable solution.?’

2611"s no surprise that the ill-behaved solutions are still contained in Equation 2.81: this recursion
relation is cquivalent to the Schréidinger cquation, so it's gor o include both the asymptotic forms we
found in Equation 2.75.

711 is possible to set this up on a computer. and discover the allowed cnergies “experimentally.”
You might call it the wag the dog method: When the tail wags. you know you’ve just passed over an
allowed value. See Problems 2.54-2.56.
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FIGURE 2.6: Solutions to the Schridinger equation for (a) E = 0.49 liw, and
(b) E = 0.51 ho.

For the allowed values of K, the recursion formula reads

) 201 =)
i) = — - R
= GEnG 1

[2.84]

If n = 0, there is only one term in the series (we must pick a; = 0 to kill /144q.
and j = 0 in Equation 2.84 yields a; = 0):

ho(§) = ao.
and hence

Yo(&) = age™+ /2
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(which, apart from the normalization, reproduces Equation 2.59). For n = 1 we
take ag = 0,8 and Equation 2.84 with j = 1 yields a3 = 0, so

hi(§) =a§.

and hence

V1(&) = ayge 1

(confirming Equation 2.62). For n = 2, j = 0 yields ay = —2a9, and j = 2 gives
ag = 0, SO

ha(§) = ao(1 — 287),

and
V(&) = ap(1 — 262)e 472,

and so on. (Compare Problem 2.10, where this last result was obtained by algebraic
means.)

In general, h,(§) will be a polynomial of degree » in &, involving even powers
only, if n is an even integer, and odd powers only, if n is an odd integer. Apart
from the overall factor (ag or a;) they are the so-called Hermite polynomials,
H,(£).*® The first few of them are listed in Table 2.1. By tradition, the arbitrary
multiplicative factor is chosen so that the coefficient of the highest power of &
is 2". With this convention, the normalized® stationary states for the harmonic
oscillator are

Y (x) = mw>l/4 ] Hy()e 512 [2.85]
n\- - jTh \/2’1—”! n . .

They are identical (of course) to the ones we obtained algebraically in Equation 2.67.

TABLE 2.1: The first few Hermite
polynomials, Hy(£).

Hp=1,

Hl =2§.

H, =482 -2,
Hy =88 — 12¢,

Hy=168% — 4882 + 12,
Hs =328 — 16083 + 120€.

Z8Note that there is a completely different set of cocfficients a; for each value of .
pletcly f

®The Hermile polynomials have been studied extensively in the mathematical literature, and
there are many tools and tricks for working with them. A few of these are explored in Problem 2.17.

301 shall not work out the normalization constant here: if you are interested in knowing how it is
done, see for example Leonard Schiff, Quantum Mechanics, 3rd ed., McGraw-Hill, New York (1968).
Section 13.
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In Figure 2.7(a) I have plotted y,(x) for the first few n’s. The quantum
oscillator is strikingly different from its classical counterpart—not only are the
energies quantized, but the position distributions have some bizarre features. For
instance, the probability of finding the particle outside the classically allowed range
(that is, with x greater than the classical amplitude for the energy in question) is
not zero (see Problem 2.15), and in all odd states the probability of finding the
particle at the center is zero. Only at large n do we begin to see some resemblance
to the classical case. In Figure 2.7(b) I have superimposed the classical position
distribution on the quantum one (for n = 100); if you smoothed out the bumps,
the two would fit pretty well (however, in the classical case we are talking about
the distribution of positions over time for one oscillator, whereas in the quantum
case we are talking about the distribution over an ensemble of identically prepared
systems).31

Problem 2.15 In the ground state of the harmonic oscillator, what is the probability
(correct to three significant digits) of finding the particle outside the classically
allowed region? Hint: Classically, the energy of an oscillator is £ = (1/2)ka? =
(1/2)mw?a®, where a is the amplitude. So the “classically allowed region” for an
oscillator of energy E extends from —+/2E /mw? to ++/2E /mw?. Look in a math
table under “Normal Distribution” or “Error Function” for the numerical value of
the integral.

Problem 2.16 Use the recursion formula (Equation 2.84) to work out Hs(§) and
Hg(§). Invoke the convention that the coefficient of the highest power of £ is 2"
to fix the overall constant.

* xProblem 2.17 In this problem we explore some of the more useful theorems (stated
without proof) involving Hermite polynomials.

(a) The Rodrigues formula says that

v d\" 3
—(—1Y'etF [ = -§
H, (&) =(=1)"e (dé) e . [2.86]

Use it to derive H3 and Hj.

(b) The following recursion relation gives you H,; in terms of the two preced-
ing Hermite polynomials:

Hy11(8) = 26 Hy(§) — 2n Hy 1 (§). [2.87]

Use it, together with your answer in (a), to obtain Hs and Hg.

3The parallel is perhaps more direct if you interprel the classical distribution as an ensemble of
oscillators all with the same energy. but with random starting times.
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FIGURE 2.7: (a) The first four stationary states of the harmonic oscillator. This
material is used by permission of John Wiley & Sons, Inc.; Stephen Gasiorowicz,
Quantum Physics, John Wiley & Sons, Inc., 1974. (b) Graph of |¢1ggl%, with the
classical distribution (dashed curve) superimposed.
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(c) If you differentiate an nth-order polynomial, you get a polynomial of order
(n — 1). For the Hermite polynomials, in fact,

dH, .
e 2n Hy_1 (£). [2.88]

Check this, by differentiating Hs and Hg.

(d) H, (&) is the nth z-derivative, at z = 0, of the generating function exp(—z*+
2z£); or, to put it another way, it is the coefficient of z"/n! in the Taylor
series expansion for this function:

o

149, " .
eTENEE = ) L Hu(8). [2.89]

n=0 "’

Use this to rederive Hy, H;, and H,.

2.4 THE FREE PARTICLE

We turn next to what should have been the simplest case of all: the free particle
(V(x) = 0 everywhere). Classically this would just mean motion at constant veloc-
ity, but in quantum mechanics the problem is surprisingly subtle and tricky. The
time-independent Schrédinger equation reads

ﬁ2 d2¢
=k [2.90]
or ,
4> V2mE
. V iy, where k = :’ . [2.91]
X~ 1

So far, it’s the same as inside the infinite square well (Equation 2.21), where the
potential is also zero; this time, however, I prefer to write the general solution in
exponential form (instead of sines and cosines), for reasons that will appear in due
course:

VU (x) = Ae™ + Be #x. [2.92]

Unlike the infinite square well, there are no boundary conditions to restrict the
possible values of k (and hence of E); the free particle can carry any (positive)
energy. Tacking on the standard time dependence, exp(—i Et/h),

(— Bk —ik(x+ 24 '
\Ij(x, f) — Aell\(u\ 2",’) + Be ll‘(‘\+2m’)_ [2.93]

Now, any function of x and ¢ that depends on these variables in the special
combination (x * vt) (for some constant v) represents a wave of fixed profile,
traveling in the Fx-direction, at speed v. A fixed point on the waveform (for
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example, a maximum or a minimum) corresponds to a fixed value of the argument,
and hence to x and ¢ such that

x T vt =constant. or x = Fvt -+ constant.

Since every point on the waveform is moving along with the same velocity, its
shape doesn’t change as it propagates. Thus the first term in Equation 2.93 repre-
sents a wave traveling to the right, and the second represents a wave (of the same
energy) going to the /eft. By the way, since they only differ by the sign in front of
k, we might as well write

W (x. 1) = Ael R, [2.94]

and let k run negative to cover the case of waves traveling to the left:

k== [2.95]

vV2mE with | ¥>0= traveling to the right,
h k < 0= traveling to the left.

Evidently the “stationary states” of the free particle are propagating waves, their
wavelength is A = 2 /|k|, and, according to the de Broglie formula (Equation 1.39),

they carry momentum
p = hk. [2.96]

The speed of these waves (the coefficient of ¢ over the coefficient of x) is

h\k| | E
VUquantum = o = m [2.97]

On the other hand, the classical speed of a free particle with energy E is given by
E = (1/2)mv? (pure kinetic, since V = 0), so

2E .

Uclassical = " = 2Uquantum- [2.98]

Apparently the quantum mechanical wave function travels at half the speed of the

particle it is supposed to represent! We’ll return to this paradox in a moment—there

is an even more serious problem we need to confront first: This wave function is
not normalizable. For

+00 +00
f W dx = |A|2f dx = |A[*(00). [2.99]

oo —00

In the case of the free particle, then, the separable solutions do not represent
physically realizable states. A free particle cannot exist in a stationary state; or,
to put it another way, there is no such thing as a free particle with a definite
energy.
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But that doesn’t mean the separable solutions are of no use to us, for they
play a mathematical role that is entirely independent of their physical interpre-
tation. The general solution to the time-dependent Schrédinger equation is still a
linear combination of separable solutions (only this time it's an integral over the
continuous variable k, instead of a sum over the discrete index n):

W(x.1) = & (kye! k=50 g [2.100]

1 +0
21 ./;oo

(The quantity 1/+/27 is factored out for convenience; what plays the role of the
coefficient ¢, in Equation 2.17 is the combination (1 /«/E)qb(k) dk.) Now this
wave function can be normalized (for appropriate ¢ (k)). But it necessarily carries
a range of k’s, and hence a range of energies and speeds. We call it a wave
packet. 32

In the generic quantum problem, we are given W(x,0), and we are asked to
find W(x.1). For a free particle the solution takes the form of Equation 2.100;
the only question is how to determine ¢ (k) so as to match the initial wave
function:

W(x.0) = o (k)e™ dk. [2.101]

| +o0
V2T ./;oo

This is a classic problem in Fourier analysis; the answer is provided by Plancherel’s
theorem (see Problem 2.20):

: 1t -
F(k)e™ dk < F(k)= — foe ™ dx. | [2.102]

1 +o<
f(""mf_oo N

F (k) is called the Fourier transform of f(x); f(x) is the inverse Fourier trans-
form of F(k) (the only difference is in the sign of the exponent). There is, of
course, some restriction on the allowable functions: The integrals have to exist. >
For our purposes this is guaranteed by the physical requirement that W (x. 0) itself

*2Sinusoidal waves extend out to infinity. and they arc not normalizable. Bul superpositions of
such waves lead to interference. which allows for localization and normalizability.

3 The necessary and sufficient condition on f(x) is thal ffcx If(‘.\')lzd.\' be finite. (In that

case fix; |F (k)lzdk is also finite, and in fact the two integrals are equal.) Sec Arlken (footnote 24).
Section 15.5.



62

Chapter 2 Time-Independent Schrédinger Equation

be normalized. So the solution to the generic quantum problem, for the free particle,
is Equation 2.100, with

o (k) = W (x. 0)e % dx. [2.103]

7 L

Example 2.6 A free particle, which is initially localized in the range —a < x < q,
is released at time 1 = O:

A, I ~a<x<a,
W(x,0) = { 0. otherwise,

where A and @ are positive real constants. Find W (x, 7).

Solution: First we need to normalize ¥ (x, 0):

o0 a
]
I:f |W (x. 0)? d\_lAI .X_261|A|' = A= —.
- —a v2a
Next we calculate ¢ (k), using Equation 2.103:

1 1 a —ik\’d 1 e~ kY 1a
Ydy =

V2T \/ —a 2 /ma —ik |—-a

1 elka _ g—ika _ 1 sin(ka)
" kJma 2i T Jma kO

Finally, we plug this back into Equation 2.100:

o) = ——

sm(ka) itk 2

W(x.1) = =D dk. [2.104]

n\/_

Unfortunately, this integral cannot be solved in terms of elementary functions,
though it can of course be evaluated numerically (Figure 2.8). (There are, in fact,
precious few cases in which the integral for W (x. t) (Equation 2.100) can be cal-
culated explicitly; see Problem 2.22 for a particularly beautiful example.)

It is illuminating to explore the limiting cases. If @ is very small, the starting
wave function is a nicely localized spike (Figure 2.9(a)). In this case we can use
the small angle approximation to write sin(ka) = ka, and hence

¢(k)&'\/z;
T
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FIGURE 2.8: Graph of |W¥(x, 1|2 (Equation 2.104) at # = 0 (the rectangle) and at
t = ma? /h (the curve).
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FIGURE 2.9: Example 2.6, for small 4. (a) Graph of ¥ (x, 0). (b) Graph of ¢ (k).

it’s flar, since the k’s cancelled out (Figure 2.9(b)). This is an example of the
uncertainty principle: If the spread in position is small, the spread in momentum
(and hence in k—see Equation 2.96) must be large. At the other extreme (large
a) the spread in position is broad (Figure 2.10(a)) and

b0 = \/Esin(ka).
n  ka

Now, sinz/z has its maximum at z = 0, and drops to zero at z = & 7 (which, in
this context, means k = Tt m/a). So for large a, ¢ (k) is a sharp spike about k = 0
(Figure 2.10(b)). This time it’s got a well-defined momentum but an ill-defined
position.
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1
Vaa
X N3 T k
a a
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FIGURE 2.10: Example 2.6, for large a. (a) Graph of ¥(x, 0). (b) Graph of ¢ (k).

I return now to the paradox noted earlier; the fact that the separable solution
W, (x, 1) in Equation 2.94 travels at the “wrong” speed for the particle it osten-
sibly represents. Strictly speaking, the problem evaporated when we discovered
that W, is not a physically realizable state. Nevertheless, it is of interest to dis-
cover how information about velocity is contained in the free particle wave function
(Equation 2.100). The essential idea is this: A wave packet is a superposition of
sinusoidal functions whose amplitude is modulated by ¢ (Figure 2.11); it consists of
“ripples” contained within an “envelope.” What corresponds to the particle velocity
is not the speed of the individual ripples (the so-called phase velocity), but rather
the speed of the envelope (the group velocity)—which, depending on the nature
of the waves, can be greater than, less than, or equal to, the velocity of the ripples
that go to make it up. For waves on a string, the group velocity is the same as the
phase velocity. For water waves it is one-half the phase velocity, as you may have
noticed when you toss a rock into a pond (if you concentrate on a particular ripple,
you will see it build up from the rear, move forward through the group, and fade
away at the front, while the group as a whole propagates out at half the speed). What
I need to show is that for the wave function of a free particle in quantum mechanics

FIGURE 2.11: A wave packet. The “enve-
lope” travels at the group velocity; the “rip-
ples” travel at the phase velocity.
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the group velocity is twice the phase velocity—just right to represent the classical
particle speed.

The problem, then, is to determine the group velocity of a wave packet with
the general form

W(x,1) = & (k)e' k5= g

1 +00
7.
(In our case w = (hk%/2m), but what I have to say now applies to any kind
of wave packet, regardless of its dispersion relation—the formula for w as a
function of k.) Let us assume that ¢ (k) is narrowly peaked about some particular
value ko. (There is nothing illegal about a broad spread in k, but such wave packets
change shape rapidly—since different components travel at different speeds—so
the whole notion of a “group,” with a well-defined velocity, loses its meaning.)
Since the integrand is negligible except in the vicinity of ky, we may as well
Taylor-expand the function w (k) about that point, and keep only the leading terms:

w (k) = wo + wjk — ko).

where wy, is the derivative of w with respect to k, at the point k.
Changing variables from k to s = k — kg (to center the integral at kg), we
have

+00

V2T J-0

Wx, 1) = & (ko + S)ef[(ko+.8')-\’—(wn+w{,s)r] ds.

Atr =0,

W(x,0) = —— '+w¢(k + 5)el kot g
T 2w S ° ‘

and at later times
1 . v [T . .
W(x. 1) o~ \/T_e:(—wo&knwur) f ¢(ko + S)e:(k()+s)(,\'—wor) ds.
T J -0

Except for the shift from x to (x — wér), the integral is the same as the one in
Y (x, 0). Thus
W(x, 1) = e @—howdly (x — w01, 0). [2.105]

Apart from the phase factor in front (which won’t affect |¥|? in any event) the
wave packet evidently moves along at a speed wy:

dw
vgroup == ‘E‘ [2.106]
(evaluated at k = kg). This is to be contrasted with the ordinary phase velocity

w
Uphase = z . [2.107]
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In our case, w = (hk/2m), so w/k = (hk/2m), whereas dw/dk = (fik/m), which
is twice as great. This confirms that it is the group velocity of the wave packet,
not the phase velocity of the stationary states, that matches the classical particle
velocity:

Uclassical = Vgroup = 2Uphase- [2.108]

Problem 2.18 Show that [Ae’®* + Be~**] and [C cos kx + D sin kx] are equivalent
ways of writing the same function of x, and determine the constants C and D in
terms of A and B, and vice versa. Comment: In quantum mechanics, when V =0,
the exponentials represent traveling waves, and are most convenient in discussing
the free particle, whereas sines and cosines correspond to standing waves, which
arise naturally in the case of the infinite square well.

Problem 2.19 Find the probability current, J (Problem 1.14) for the free particle
wave function Equation 2.94. Which direction does the probability current flow?

x xProblem 2.20 This problem is designed to guide you through a “proof” of Plan-

cherel’s theorem, by starting with the theory of ordinary Fourier series on a finite
interval, and allowing that interval to expand to infinity.

(a) Dirichlet’s theorem says that “any” function f(x) on the interval [—a, +a]
can be expanded as a Fourier series:

flx)= Z[a,, sin(nmwx/a) + b, cos(nmx/a)l.

n=0

Show that this can be written equivalently as

00
fx) = Z Cneinrr.\'/a.

n=—oc
What is ¢, in terms of a,, and b,?
(b) Show (by appropriate modification of Fourier’s trick) that
| —
Cn = _’/ f(X)e_”m'\/a dx.
2a J_,

(c) Eliminate n and ¢, in favor of the new variables k = (nm/a) and F(k) =
v2/m ac,. Show that (a) and (b) now become
1 i ik 1 [T ika
fx)=— Fkye™ Ak: Fk) = — fx)e """ dx,
V2T — V2T J-a

where Ak is the increment in k from one n to the next.
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(d) Take the limit ¢ — oo to obtain Plancherel’s theorem. Comment: In view
of their quite different origins, it is surprising (and delightful) that the two
formulas—one for F (k) in terms of f(x), the other for f(x) in terms of
F (k)—have such a similar structure in the limit ¢ — o0.

Problem 2.21 A free particle has the initial wave function
W(x.0) = Ae™M,
where A and a are positive real constants.
(a) Normalize W (x.0).
(b) Find ¢ (k).
(c) Construct W(x, r), in the form of an integral.

(d) Discuss the limiting cases (a very large, and a very small).

xProblem 2.22 The gaussian wave packet. A free particle has the initial wave
function

W(x,0) = Ae=v"
where A and a are constants (a is real and positive).
(a) Normalize W (x.0).
(b) Find W(x,t). Hint: Integrals of the form

+oc -
/ e—(a.\ +bx) dx

—00
can be handled by “completing the square™: Let y = /a [x + (b/2a)], and
note that (ax2 + bx) = .\.2 — (b2/4a). Answer:

W(x. 1) (20)1/4 e“'-"l/l1+(2ihat/m‘)]
X, = | — .
T 1+ Qikatr/m)

(c) Find |W(x,t)|*. Express your answer in terms of the quantity

a
w= \/1 ¥ Qhat/m)2

Sketch |W|? (as a function of x) at t = 0, and again for some very large 1.
Qualitatively, what happens to |¥|?, as time goes on?

(d) Find (x), (p), (x?), (p?), oy, and op. Partial answer: (p%) = ah*, but it
may take some algebra to reduce it to this simple form.

(e) Does the uncertainty principle hold? At what time ¢ does the system come
closest to the uncertainty limit?
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2.5 THE DELTA-FUNCTION POTENTIAL

2.5.1 Bound States and Scattering States

We have encountered two very different kinds of solutions to the time-independent
Schrédinger equation: For the infinite square well and the harmonic oscillator they
are normalizable, and labeled by a discrete index n; for the free particle they are
non-normalizable, and labeled by a continuous variable k. The former represent
physically realizable states in their own right, the latter do not; but in both cases the
general solution to the time-dependent Schrodinger equation is a linear combination
of stationary states—for the first type this combination takes the form of a sum
(over n), whereas for the second it is an integral (over k). What is the physical
significance of this distinction?

In classical mechanics a one-dimensional time-independent potential can give
rise to two rather different kinds of motion. If V (x) rises higher than the particle’s
total energy (E) on either side (Figure 2.12(a)), then the particle is “stuck” in the
potential well—it rocks back and forth between the turning peints, but it cannot
escape (unless, of course, you provide it with a source of extra energy, such as
a motor, but we’re not talking about that). We call this a bound state. If, on the
other hand, E exceeds V(x) on one side (or both), then the particle comes in from
“infinity,” slows down or speeds up under the influence of the potential, and returns
to infinity (Figure 2.12(b)). (It can’t get trapped in the potential unless there is some
mechanism, such as friction, to dissipate energy, but again, we're not talking about
that.) We call this a scattering state. Some potentials admit only bound states (for
instance, the harmonic oscillator); some allow only scattering states (a potential
hill with no dips in it, for example); some permit both kinds, depending on the
energy of the particle.

The two kinds of solutions to the Schrédinger equation correspond precisely to
bound and scattering states. The distinction is even cleaner in the quantum domain,
because the phenomenon of tunneling (which we’ll come to shortly) allows the
particle to “leak” through any finite potential barrier, so the only thing that matters
is the potential at infinity (Figure 2.12(c)):

{ E <[V(—00) and V(400)]= bound state, [2.109]
E > [V(—00) or V(+00)]= scattering state. )

In “real life” most potentials go to zero at infinity, in which case the criterion
simplifies even further:

[2.110]

E < 0= bound state,
E > 0 = scattering state.

Because the infinite square well and harmonic oscillator potentials go to infinity as
x — T oo, they admit bound states only; because the free particle potential is zero
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Classical turning point

Classical turning points

xY

(c)

FIGURE 2.12: (a) A bound state. (b) Scattering states. (c) A classical bound state, but
a quantum scattering state.

everywhere, it only allows scattering states.> In this section (and the following
one) we shall explore potentials that give rise to both kinds of states.

St you are irritatingly observant. you may have noticed that the general theorem requiring
E > Vpin (Problem 2.2) does not really apply to scattering states. since they are not normalizable
anyway. If this bothers you, try solving the Schridinger equation with E < 0. for the free particle, and
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8(x)

s> FIGURE 2.13: The Dirac delta function
x  (Equation 2.111).

2.5.2 The Delta-Function Well

The Dirac delta function is an infinitely high, infinitesimally narrow spike at the
origin, whose area is 1 (Figure 2.13):

~_|o ifxs#0 : oo o
8(.\)={ 0o, ifx=0 } with /_oo S(x)dx =1. [2.111]

Technically, it isn’t a function at all, since it is not finite at x = 0 (mathematicians
call it a generalized function, or distribution).® Nevertheless, it is an extremely
useful construct in theoretical physics. (For example, in electrodynamics the charge
density of a point charge is a delta function.) Notice that §(x —a) would be a spike
of area 1 at the point a. If you multiply §(x — a) by an ordinary function f(x),
it’s the same as multiplying by f(a),

J@)é(x —a) = f(a)d(x —a), [2.112]

because the product is zero anyway except at the point a. In particular,

+o0

+o0
)6y —a)dx = f(a)/ S(x —aYdx = f(a). [2.113]

-0

That’s the most important property of the delta function: Under the integral sign it
serves to “pick out” the value of f(x) at the point a. (Of course, the integral need
not go from —oo to +oo; all that matters is that the domain of integration include
the point ¢, so @ — € to a + € would do, for any € > 0.)

Let’s consider a potential of the form

V(x) = —abd(x), [2.114]

note that even linear combinations of these solutions cannot be normalized. The positive energy solutions
by themselves constilute a complete set.

33The delta function can be thought of as the limir of a sequence of functions, such as reclangles
(or triangles) of cver-increasing height and ever-decreasing width.
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where o is some positive constant.?® This is an artificial potential, to be sure (so was
the infinite square well), but it’s delightfully simple to work with, and illuminates
the basic theory with a minimum of analytical clutter. The Schrodinger equation
for the delta-function well reads

h-z d2
_ﬂdT‘g —as(x)¥ = Ey: [2.115]

it yields both bound states (E < 0) and scattering states (E > 0).
We’ll look first at the bound states. In the region x < 0, V(x) =0, so

dzw _ 2mE

T = —h—2¢ = k2, [2.116]
where
V—2mE
K = # [2.117]
1

(E is negative, by assumption, so « is real and positive.) The general solution to
Equation 2.116 is
Y(x) = Ae ™ + B, [2.118]

but the first term blows up as x — —o0, so we must choose A = 0:
Y(x) = B, (x <0). [2.119]

In the region x > 0, V(x) is again zero, and the general solution is of the form
Fexp(—«x) + G exp(xx); this time it’s the second term that blows up (as x —
+00), so

Y(x)=Fe ™, (x> 0). [2.120]

It remains only to stitch these two functions together, using the appropriate
boundary conditions at x = 0. I quoted earlier the standard boundary conditions
for ¢:

1. is always continuous; (2.121]
2.dy/dx is continuous except at points where the potential is infinite. '
In this case the first boundary condition tells us that F = B, so
) Be*. (x <0).
w(.\) = { Be—K.\', (.\' > 0). [2122]

36The delta function itself carries units of 1/length (see Equation 2.111), so ¢ has (he dimensions
energy X lengih.
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x ¥

FIGURE 2.14: Bound state wave function for the delta-function potential (Equa-
tion 2.122).

¥ (x) is plotted in Figure 2.14. The second boundary condition tells us nothing;
this is (like the infinite square well) the exceptional case where V is infinite at the
join, and it’s clear from the graph that this function has a kink at x = 0. Moreover,
up to this point the delta function has not come into the story at all. Evidently the
delta function must determine the discontinuity in the derivative of i, at x = 0.
I'll show you now how this works, and as a by-product we'll see why dy/dx is
ordinarily continuous.

The idea is to integrate the Schrédinger equation, from —e to +€, and then
take the limit as € — O:

») +e 42 +e +e
f ¥ dx —I—f VxX)y(x)dx =E Y(x)dx. [2.123]

Y 2
2m J_. dx —¢ —¢

The first integral is nothing but dv//dx, evaluated at the two end points; the last
integral is zero, in the limit € — 0, since it’s the area of a sliver with vanishing
width and finite height. Thus

dyr . [(dy
T l=1 -
A (cl.x ) €0 ( dx

Typically, the limit on the right is again zero, and that’s why dv/dx is ordinarily
continuous. But when V(x) is infinite at the boundary, this argument fails. In
particular, if V(x) = —aé(x), Equation 2.113 yields

dy\ _Zm.a
A (7\?) =3 ¥ (0). [2.125]

For the case at hand (Equation 2.122),

dyr/dx = —Bke™*, for (x > 0)., so dw/d,\'l+ = —B«,
dy/dx = +Bke™, for (x <0), sody/dx|_=+B«.

_dv

+e dx

2m +e
) = — llmf Vx)y(x)dx. [2.124]

ﬁ e—=0) —c

and hence A(dy/dx) = —2Bk. And {(0) = B. So Equation 2.125 says

= %’- [2.126]
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and the allowed energy (Equation 2.117) is

E_ h?'/cz_ ma 2.127]
T 2m oK% )

Finally, we normalize y:
00 , oC - |B|2
f | (x)|* dx = 2|B|2f e Mdx = —=1.
-0 0

so (choosing, for convenience, the positive real root):

B=.«k= . [2.128]

Evidently the delta-function well, regardless of its “strength” «, has exactly one
bound state:

I8 2
w(x) — ___’;;E_e—mclel/ﬁ'; E = —”21;:2 . [2.129]

What about scarrering states, with E > 0? For x < 0 the Schrédinger equation
reads

2
where
k= \/2:? [2.130]
is real-and positive. The general solution is
¥ (x) = Ae™ 4 Bemikx [2.131]

and this time we cannot rule out either term, since neither of them blows up.
Similarly, for x > 0, _ _
Y(x) = Fe™ + Ge ™, [2.132]

The continuity of ¥ (x) at x = 0 requires that
F+G=A+8B. [2.133]
The derivatives are

dyr/dx =ik (Fe™ — Ge™™**) . for (x > 0), so dy/dx|, =ik(F —G),
dy/dx =ik (Ae™ — Be='*), for (x <0), sody/dx|_=ik(A— B).
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and hence A(dy/dx) = ik(F — G — A+ B). Meanwhile, ¥ (0) = (A + B), so the
second boundary condition (Equation 2.125) says

2
ik(F—G—A+B)= -2

(A + B), [2.134]

hZ

or, more compactly,

F—G=A(l +2iB) — B(1 —2i). where = "% [2.135]

h2k
Having imposed both boundary conditions, we are left with two equations
(Equations 2.133 and 2.135) in four unknowns (A, B, F, and G)—five, if you
count k. Normalization won’t help—this isn’t a normalizable state. Perhaps we’d
better pause, then, and examine the physical significance of these various con-
stants. Recall that exp(ikx) gives rise (when coupled with the time-dependent
factor exp(—i Et/h)) to a wave function propagating to the right, and exp(—ikx)
leads to a wave propagating to the left. It follows that A (in Equation 2.131) is the
amplitude of a wave coming in from the left, B is the amplitude of a wave return-
ing to the left, F (Equation 2.132) is the amplitude of a wave traveling off to the
right, and G is the amplitude of a wave coming in from the right (see Figure 2.15).
In a typical scattering experiment particles are fired in from one direction—Ilet’s
say, from the left. In that case the amplitude of the wave coming in from the right
will be zero:
G =0, (for scattering from the left): [2.136]

A is the amplitude of the incident wave, B is the amplitude of the reflected wave,
and F is the amplitude of the transmitted wave. Solving Equations 2.133 and
2.135 for B and F, we find
iB I
B=——A, F=
1—if 1 —iB
(If you want to study scattering from the right, set A = 0; then G is the incident
amplitude, F is the reflected amplitude, and B is the transmitted amplitude.)

A. [2.137]

A

Aeikx Feikx
—_— .
Be—ikx Ge—ikx

xYy

FIGURE 2.15: Scattering from a delta func-
tion well.
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Now, the probability of finding the particle at a specified location is given by
|W|2, so the relative3” probability that an incident particle will be reflected back is

B B
|A]2 T 1+ Y

R = [2.138]

R is called the reflection coefficient. (If you have a beam of particles, it tells

you the fraction of the incoming number that will bounce back.) Meanwhile, the
probability of transmission is given by the transmission coefficient

|F|? 1
T= =155 [2.139]

Of course, the sum of these probabilities should be 1—and it is:
R+T=1. [2.140]

Notice that R and T are functions of 8, and hence (Equations 2.130 and 2.135)
of E:

1 1
T

R = _, = : 2.141
1+ QR2E/ma?) 1+ (ma?/2h%E) [ :

The higher the energy, the greater the probability of transmission (which certainly
seems reasonable).

This is all very tidy, but there is a sticky matter of principle that we cannot
altogether ignore: These scattering wave functions are not normalizable, so they
don’t actually represent possible particle states. But we know what the resolution to
this problem is: We must form normalizable linear combinations of the stationary
states, just as we did for the free particle—true physical particles are represented
by the resulting wave packets. Though straightforward in principle, this is a messy
business in practice, and at this point it is best to turn the problem over to a
computer.®® Meanwhile, since it is impossible to create a normalizable free-particle
wave function without involving a range of energies, R and T should be interpreted
as the approximate reflection and transmission probabilities for particles in the
vicinity of E.

Incidentally, it might strike you as peculiar that we were able to analyze a
quintessentially time-dependent problem (particle comes in, scatters off a potential,

3 This is not a normalizable wave function. so the absolute probability of finding the particle
al a particular location is not well defined; nevertheless. the ratio of probabilities for the incident and
reflected waves is meaningful. More on this in the next paragraph.

3 Numerical studies of wave packets scattering off wells and barriers reveal extraordinarily rich
structure, The classic analysis is A. Goldberg, H. M. Schey. and J. L. Schwartz, Am. J. Phys. 35, 177
(1967); more recent work can be found on the Web.
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V(x) = ad(x)

T

X FIGURE 2.16: The delta-function barrier.

and flies off to infinity) using stationary states. After all, ¢ (in Equations 2.131
and 2.132) is simply a complex, time-independent, sinusoidal function, extending
(with constant amplitude) to infinity in both directions. And yet, by imposing
appropriate boundary conditions on this function we were able to determine the
probability that a particle (represented by a localized wave packet) would bounce
off, or pass through, the potential. The mathematical miracle behind this is, I
suppose, the fact that by taking linear combinations of states spread over all space,
and with essentially trivial time dependence, we can construct wave functions that
are concentrated about a (moving) point, with quite elaborate behavior in time (see
Problem 2.43).

As long as we’ve got the relevant equations on the table, let’s look briefly at
the case of a delta-function barrier (Figure 2.16). Formally, all we have to do is
change the sign of «. This kills the bound state, of course (Problem 2.2). On the
other hand, the reflection and transmission coefficients, which depend only on o,
are unchanged. Strange to say, the particle is just as likely to pass through the barrier
as to cross over the well! Classically, of course, a particle cannot make it over an
infinitely high barrier, regardless of its energy. In fact, classical scattering problems
are pretty dull: If E > Vpax, then T = 1 and R = O0—the particle certainly
makes it over; if E < Vgax then T = 0 and R = 1—it rides up the hill until
it runs out of steam, and then returns the same way it came. Quantum scattering
problems are much richer: The particle has some nonzero probability of passing
through the potential even if E < Vi.x. We call this phenomenon tunneling; it is
the mechanism that makes possible much of modern electronics—not to mention

spectacular advances in microscopy. Conversely, even if E > Vi there is a

possibility that the particle will bounce back—though I wouldn’t advise driving
off a cliff in the hope that quantum mechanics will save you (see Problem 2.35).

*xProblem 2.23 Evaluate the following integrals:

(a) [ (¥ —3x% 4 2x — DS(x +2) dx.
(b) [y Tcos(3x) + 2]8(x — ) dx.
(c) J& exp(lx] + 3)8(x —2) dx.
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Problem 2.24 Delta functions live under integral signs, and two expressions (D (x)
and D,(x)) involving delta functions are said to be equal if

+00 +0o0

f(x)Dy(x)dx = F(x)Dsy(x)dx.

-0 -
for every (ordinary) function f(x).

(a) Show that
d(cx) = ﬁ(ﬁ(x), [2.142]

where ¢ is a real constant. (Be sure to check the case where c is negative.)

(b) Let O(x) be the step function:

L~_ )1 ifx>0.
o(x) = { 0. ifx <O [2.143]

(In the rare case where it actually matters, we define 6(0) to be 1/2.) Show
that d0/dx = 6(x).

* xProblem 2.25 Check the uncertainty principle for the wave function in
Equation 2.129. Hint: Calculating (p?) is tricky, because the derivative of ¥ has
a step discontinuity at x = 0. Use the result in Problem 2.24(b). Partial answer:

(p?) = (ma/h)?.

*xProblem 2.26 What is the Fourier transform of 8 (x)? Using Plancherel’s theorem,
show that

1 [+ .
§(x) = ——f e™ dk. [2.144]
27 J o

Comment: This formula gives any respectable mathematician apoplexy. Although
the integral is clearly infinite when x = 0, it doesn’t converge (to zero or any-
thing else) when x # O, since the integrand oscillates forever. There are ways
to patch it up (for instance, you can integrate from —L to +L, and interpret
Equation 2.144 to mean the average value of the finite integral, as L — o0).
The source of the problem is that the delta function doesn’t meet the requirement
(square-integrability) for Plancherel’s theorem (see footnote 33). In spite of this,
Equation 2.144 can be extremely useful, if handled with care.

*xProblem 2.27 Consider the double delta-function potential
Vix) = —a[d(x +a)+ 6(x — a)],

where ¢ and a are positive constants.
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(a) Sketch this potential.

(b) How many bound states does it possess? Find the allowed energies, for ¢ =
h%/ma and for & = h%/4ma, and sketch the wave functions.

* xProblem 2.28 Find the transmission coefficient for the potential in Problem 2.27.

2.6 THE FINITE SQUARE WELL

As a last example, consider the finite square well potential

—Vy, for —a<x<ua,

0, for |x| > a, [2.145]

Vix) = {
where Vj is a (positive) constant (Figure 2.17). Like the delta-function well, this
potential admits both bound states (with E < 0) and scattering states (with E > 0).

We’ll look first at the bound states.
In the region x < —a the potential is zero, so the Schrodinger equation reads

<

ht d*y d*

2
—*2—’7; dxz = Ew. or dx2 =K w,

where

v=2mE

o h

[2.146]

is real and positive. The general solution is ¥ (x) = A exp(—«x) + B exp(«xx), but
the first term blows up (as x — —o00), so the physically admissible solution (as
before—see Equation 2.119) is

Y (x) = Be*', forx < —a. [2.147]

FIGURE 2.17: The finite square well
(Equation 2.145).
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In the region —a < x < a, V(x) = —Vj, and the Schrodinger equation reads
n? d*y i
- — Vo = EVY, = -1y,
2m dx? ov v. o dx? 4
where
V2m(E + V,
= ’"(h + %), [2.148]

Although E is negative, for bound states, it must be greater than —Vy, by the
old theorem E > Vyin (Problem 2.2); so / is also real and positive. The general
solution is®®

¥ (x) = Csin(Ix) + Dcos(lx), for —a <x < a, [2.149]

where C and D are arbitrary constants. Finally, in the region .x > « the potential
is again zero; the general solution is ¥ (x) = F exp(—«x) + G exp(xx), but the
second term blows up (as x — 00), so we are left with

Y(x)=Fe ™., forx >a. [2.150]

The next step is to impose boundary conditions: ¥ and dvy/dx continuous at
—a and +a. But we can save a little time by noting that this potential is an even
function, so we can assume with no loss of generality that the solutions are either
even or odd (Problem 2.1(c)). The advantage of this is that we need only impose
the boundary conditions on one side (say, at +a); the other side is then automatic,
since ¥ (—x) = Ty (x). I'll work out the even solutions; you get to do the odd
ones in Problem 2.29. The cosine is even (and the sine is odd), so I'm looking for
solutions of the form

Fe™™*, for x > a.
Y(x) =4 Dcos(lx). for0<x <a. [2.151]
¥ (—x). for v < 0.

The continuity of y7(x), at x = a, says
Fe ™™ = Dcos(la). [2.152]
and the continuity of dvy/dx, says
—kFe ¥ = —[Dsin(la). [2.153]
Dividing Equation 2.153 by Equation 2.152, we find that
k =l tan(la). [2.154]

3You can. if you like, write the gencral solution in exponential form (C'e™ + D'e=). This
leads to the same final result. but since the potential is symmetric we know the solutions will be either
even or odd, and the sine/cosine nolation allows us to exploit this directly.
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A ‘ ! Il | l

tan z
i

| V(2,/2)°-1

1
!
1

[l 1 T
/2 yid 3n/2 2n 5n/2 z

FIGURE 2.18: Graphical solution to Equation 2.156, for 2y = 8 (even states).

This is a formula for the allowed energies, since « and / are both functions
of E. To solve for E, we first adopt some nicer notation: Let

z=la, and zO_E;—l\/ZnIVo. [2.155]
1

-z

tanz = |/ (z0/2)% — 1. [2.156]

This is a transcendental equation for z (and hence for E) as a function of zg
(which is a measure of the “size” of the well). It can be solved numerically, using
a computer, or graphically, by plotting tanz and /(z9/z)2 — 1 on the same grid,
and looking for points of intersection (see Figure 2.18). Two limiting cases are of
special interest:

1. Wide, deep well. If 7z is very large, the intersections occur just slightly
below z,, = nm /2, with n odd; it follows that

According to Equations 2.146 and 2.148, (k2 + 12) = 2m Vo/ﬁz, SOKd = /2
and Equation 2.154 reads

oW

I N )
n-m~h-
En + VO =

= A [2.157]

But E + Vj is the energy above the bottom of the well, and on the right side
we have precisely the infinite square well energies, for a well of width 2a (see
Equation 2.27)—or rather, half of them, since this n is odd. (The other ones, of
course, come from the odd wave functions, as you’ll discover in Problem 2.29.) So
the finite square well goes over to the infinite square well, as V) — oo; however,
for any finite Vy there are only a finite number of bound states,

2. Shallow, narrow well. As zy decreases, there are fewer and fewer bound
states, until finally (for zp < m /2, where the lowest odd state disappears) only one
remains. It is interesting to note, however, that there is always one bound state, no
matter how “weak” the well becomes.
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You'’re welcome to normalize y (Equation 2.151), if you’re interested
(Problem 2.30), but I'm going to move on now to the scattering states (E > 0).
To the left, where V(x) = 0, we have

Y (x) = Ae™ + Be ™ for (x < —a). [2.158]
where (as usual)
V2mE
k= 2;7" . [2.159]

Inside the well, where V(x) = —Vj,
¥ (x) = Csin(lx) + Dcos(lx), for (—a < x < a), [2.160]

where, as before,

V2m(E + V)

[ = -, 2.161
; [2.161]

To the right, assuming there is no incoming wave in this region, we have
Y (x) = Fe'**. [2.162]

Here A is the incident amplitude, B is the reflected amplitude, and F is the trans-
mitted amplitude.*?
There are four boundary conditions: Continuity of i (x) at —a says
Ae*@ 1 Be*® — _Csin(la) 4+ D cos(la), [2.163]
continuity of diyr/dx at —a gives
ik[Ae'k — B = I[C cos(la) + D sin(la)] [2.164]
continuity of ¥ (x) at +a yields
Csin(la) + D cos(la) = Fe'*®, [2.165]

and continuity of di/dx at +a requires

I[C cos(la) — Dsin(la)] = ik Fe™. [2.166]

OWe could look for even and odd functions. as we did in the casc of bound states. but the
scattering problem is inherently asymmelric, since the waves come in from one side only. and the
exponential notation (representing traveling waves) is more natural in this context.
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TA

E

FIGURE 2.19: Transmission coefficient as a function of energy (Equation 2.169).

We can use two of these to eliminate C and D, and solve the remaining two for
B and F (see Problem 2.32).

sin(2la)  , n
=i——— (" —k*)F. .
B=i il ( k) [2.167]

—2ika
F= ¢ 3 "; . [2.168]
cos(2la) — it 2{, ) sin(2la)

The transmission coefficient (T = |F 12/1A|2), expressed in terms of the orig-
inal variables, is given by

V2 2a
Tl =14 —9  sin?{ =/2m(E+Vp) ). 2.169
+4E(E+Vo) sin (h m(E + Vp) [ ]

Notice that T = 1 (the well becomes “transparent’) whenever the sine is zero,
which is to say, when

2
%\/Zm(En + Vo) = nm, [2.170]
i
where » is any integer. The energies for perfect transmission, then, are given by
2_ 2.2
nemw=h-
Ey+ VW= ——. 2.171
Yo 2m(2a)? [ :

which happen to be precisely the allowed energies for the infinite square well. T
is plotted in Figure 2.19, as a function of energy.*!

xProblem 2.29 Analyze the odd bound state wave functions for the finite square

well. Derive the transcendental equation for the allowed energies, and solve it
graphically. Examine the two limiting cases. Is there always an odd bound state?

1 This remarkable phenomenon has been observed in the laboratory, in the form of the Ramsauer-
Townsend effect. For an illuminating discussion see Richard W. Robinett. Quantum Mechanics. Oxford
U.P.. 1997. Section 12.4.1.
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Problem 2.30 Normalize v (x) in Equation 2.151, to determine the constants D
and F.

Problem 2.31 The Dirac delta function can be thought of as the limiting case of a
rectangle of area 1, as the height goes to infinity and the width goes to zero. Show
that the delta-function well (Equation 2.114) is a “weak” potential (even though it
is infinitely deep), in the sense that zg — 0. Determine the bound state energy for
the delta-function potential, by treating it as the limit of a finite square well. Check
that your answer is consistent with Equation 2.129. Also show that Equation 2.169
reduces to Equation 2.141 in the appropriate limit.

Problem 2.32 Derive Equations 2.167 and 2.168. Hint: Use Equations 2.165 and
2.166 to solve for C and D in terms of F:

k " k "
C = [sin(la) + iT cos(la)] M. D= [cos(la) — i7 sin(la)] e,

Plug these back into Equations 2.163 and 2.164. Obtain the transmission coefficient,
and confirm Equation 2.169.

* *Problem 2.33 Determine the transmission coefficient for a rectangular barrier
(same as Equation 2.145, only with V(x) = +Vp > 0 in the region —a < x < a).
Treat separately the three cases E < Vp, E = Vy, and E > Vp (note that the
wave fugction inside the barrier is different in the three cases). Partial answer: For
E < Vp,*?

Ve

T l=14 -0
T IEo - E)

2
sinh? (T"\/zm(vo - E)) .
1

xProblem 2.34 Consider the “step” potential:

0, ifx<0.
Vix) = { Vo. ifx > 0.

(a) Calculate the reflection coefficient, for the case £ < Vj, and comment on
the answer.

(b) Calculate the reflection coefficient for the case E > V.

(c) For a potential such as this, which does not go back to zero to the right of
the barrier, the transmission coefficient is not simply |F|?/|A|> (with A the

42This is a good example of wnneling—classically the particle would bounce back.
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AV(x)

xXYy

- VO

FIGURE 2.20: Scattering from a “cliff”’ (Problem 2.35).

(d)

incident amplitude and F the transmitted amplitude), because the transmitted
wave travels at a different speed. Show that

E—Vy |F?

T — 0| |7,
E |A)

for E > Vy. Hint: You can figure it out using Equation 2.98, or—more ele-

gantly, but less informatively—from the probability current (Problem 2.19).
What is T, for £ < V?

[2.172]

For E > V,, calculate the transmission coefficient for the step potential, and
check that T + R = 1.

Problem 2.35 A particle of mass m and kinetic energy E > 0 approaches an
abrupt potential drop Vy (Figure 2.20).

(a)

(b)

(c)

What is the probability that it will “reflect” back, if E = V;3/3? Hint: This
is just like Problem 2.34, except that the step now goes down, instead of up.

I drew the figure so as to make you think of a car approaching a cliff, but
obviously the probability of “bouncing back” from the edge of a cliff is far
smaller than what you got in (a)—unless you’re Bugs Bunny. Explain why
this potential does not correctly represent a cliff. Hinr: In Figure 2.20 the
potential energy of the car drops discontinuously to —Vj, as it passes x = 0;
would this be true for a falling car?

When a free neutron enters a nucleus, it experiences a sudden drop in poten-
tial energy, from V = 0 outside to around —12 MeV (million electron volts)
inside. Suppose a neutron, emitted with kinetic energy 4 MeV by a fission
event, strikes such a nucleus. What is the probability it will be absorbed,
thereby initiating another fission? Hint: You calculated the probability of
reflection in part (a); use T = 1 — R to get the probability of transmission
through the surface.
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FURTHER PROBLEMS FOR CHAPTER 2

Problem 2.36 Solve the time-independent Schrédinger equation with appropri-
ate boundary conditions for the *‘centered” infinite square well: V(x) = 0 (for
—a < x < +a), V(x) = oo (otherwise). Check that your allowed energies are
consistent with mine (Equation 2.27), and confirm that your y's can be obtained
from mine (Equation 2.28) by the substitution x — (x + a)/2 (and appropriate
renormalization). Sketch your first three solutions, and compare Figure 2.2. Note
that the width of the well is now 2a.

Problem 2.37 A particle in the infinite square well (Equation 2.19) has the initial
wave function

Y(x.0)= Asin3(7r.r/a) O <x<a).

Determine A, find W(x.r), and calculate (x), as a function of time. What is the
expectation value of the energy? Hint: sin” 6 and cos” 6 can be reduced, by repeated
application of the trigonometric sum formulas, to linear combinations of sin(18)
and cos(m@), withmm =0.1.2. ... . n.

xProblem 2.38 A particle of mass m is in the ground state of the infinite square well
(Equation 2.19). Suddenly the well expands to twice its original size—the right
wall moving from a to 2a—1leaving the wave function (momentarily) undisturbed.
The energy of the particle is now measured.

(a) What is the most probable result? What is the probability of getting that
result?

(b) What is the next most probable result, and what is its probability?

(c) What is the expectation value of the energy? Hint: If you find yourself
confronted with an infinite series, try another method.

Problem 2.39

(a) Show that the wave function of a particle in the infinite square well returns
to its original form after a quantum revival time T = 4ma?/xh. That is:
W(x.T) = W(x.0) for any state (nor just a stationary state).

(b) What is the classical revival time, for a particle of energy E bouncing back
and forth between the walls?

(c) For what energy are the two revival times equal?*?

43The fact that the classical and quantumn revival times bear no obvious relation to one another
(and the quantum one doesn’t even depend on Lhe energy) is a curious paradox; see Daniel Styer.
Am. J. Phys. 69, 56 (2001).
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Problem 2.40 A particle of mass m is in the potential

o) (x <0),
V(x) =1 —32i%*/ma* (0 <x <a).
0 (x > a).

(a) How many bound states are there?

(b) In the highest-energy bound state, what is the probability that the particle
would be found outside the well (x > a)? Answer: 0.542, so even though it
is “bound” by the well, it is more likely to be found outside than inside!

Problem 2.41 A particle of mass m in the harmonic oscillator potential
(Equation 2.43) starts out in the state

2
vir0 =4 (1-2,[78x)
1

for some constant A.

(a) What is the expectation value of the energy?

(b) At some later time T the wave function is

2
W(x,T) = B (1 +2 /"—;C—O-x> e~
1

for some constant B. What is the smallest possible value of T?

Problem 2.42 Find the allowed energies of the half harmonic oscillator

N (l/2)n-1.w2x2. for x > 0.
V= { o0, for x < 0.
(This represents, for example. a spring that can be stretched, but not compressed.)

Hint: This requires some careful thought, but very little actual computation.

* xProblem 2.43 In Problem 2.22 you analyzed the stationary gaussian free particle
wave packet. Now solve the same problem for the traveling gaussian wave packet,
starting with the initial wave function

W (x, 0) — Ae—a.\'zeil.\'~

where [/ is a real constant.
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* xProblem 2.44 Solve the time-independent Schrodinger equation for a centered
infinite square well with a delta-function barrier in the middle:

ad(x), for —a <x < +a,
00, for |x| > a.

V(x) ={

Treat the even and odd wave functions separately. Don’t bother to normalize them.
Find the allowed energies (graphically, if necessary). How do they compare with
the corresponding energies in the absence of the delta function? Explain why the
odd solutions are not affected by the delta function. Comment on the limiting cases
a— 0and a - 0.

Problem 2.45 If two (or more) distinct** solutions to the (time-independent)
Schrodinger equation have the same energy E, these states are said to be degen-
erate. For example, the free particle states are doubly degenerate—one solution
representing motion to the right., and the other motion to the left. But we have never
encountered normalizable degenerate solutions, and this is no accident. Prove the
following theorem: In one dimension™® there are no degenerate bound states. Hint:
Suppose there are two solutions, ¥ and y,, with the same energy E. Multiply the
Schrédinger equation for iy by 2, and the Schrodinger equation for ¥, by v,
and subtract, to show that (y»dyr/dx — yr1diy/dx) is a constant. Use the fact
that for normalizable solutions ¥ — 0 at & 0o to demonstrate that this constant is
in fact zero. Conclude that 2 is a multiple of i/, and hence that the two solutions
are not distinct.

Problem 2.46 Imagine a bead of mass m that slides frictionlessly around a circular
wire ring of circumference L. (This is just like a free particle, except that ¥ (x +
L) = ¥ (x).) Find the stationary states (with appropriate normalization) and the
corresponding allowed energies. Note that there are nvo independent solutions for
each energy E, —corresponding to clockwise and counter-clockwise circulation;
call them ¥,7 (x) and ¥, (x). How do you account for this degeneracy, in view of
the theorem in Problem 2.45 (why does the theorem fail, in this case)?

* xProblem 2.47 Artention: This is a strictly qualitative problem—no calculations
allowed! Consider the “double square well” potential (Figure 2.21). Suppose the

Hf two solutions differ only by a multiplicative constant (so that. once normalized. they differ

only by a phase factor e'®). they represent the same physical state. and in this sense they are nor distinct
solutions. Technically, by “distinct™ I mean “linearly independent.”

B higher dimensions such degeneracy is very common. as we shall see in Chapter 4. Assume
that the potential does nol consist of isolated picces separated by regions where V = co—1two isolated
infinite square wells. for instance, would give rise o degenerale bound states. for which the particle is
cither in the one or in the other.
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A Vix)

><v

-Vy

FIGURE 2.21: The double square well (Problem 2.47).

depth Vp and the width a are fixed, and large enough so that several bound states
occur.

(a) Sketch the ground state wave function v and the first excited state yra,
(i) for the case b =0, (ii) for b = a. and (iii) for b > a.

(b) Qualitatively, how do the corresponding energies (E| and E,) vary, as b goes
from O to co? Sketch E|(b) and E2(b) on the same graph.

(c) The double well is a very primitive one-dimensional model for the potential
experienced by an electron in a diatomic melecule (the two wells represent
the attractive force of the nuclei). If the nuclei are free to move, they will
adopt the configuration of minimum energy. In view of your conclusions in
(b), does the electron tend to draw the nuclei together, or push them apart?
(Of course, there is also the internuclear repulsion to consider, but that’s a
separate problem.)

Problem 2.48 In Problem 2.7(d) you got the expectation value of the energy by
summing the series in Equation 2.39, but 1 warned you (in footnote 15) not to try it
the “old fashioned way,” (H) = [ W(x.0)*HW¥(x.0)dx, because the discontinu-
ous first derivative of W(x. 0) renders the second derivative problematic. Actually,
you could have done it using integration by parts, but the Dirac delta function
affords a much cleaner way to handle such anomalies.

(a) Calculate the first derivative of W(x.0) (in Problem 2.7), and express the
answer in terms of the step function, 8(x — «a/2), defined in Equation 2.143.
(Don’t worry about the end points—just the interior region 0 < x < a.)

(b) Exploit the result of Problem 2.24(b) to write the second derivative of ¥ (x, 0)
in terms of the delta function.

(c) Evaluate the integral f\l’(.\‘.O)*H W(x,0)dx, and check that you get the
same answer as before.
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* % xProblem 2.49

(a) Show that
Wix. 1) maw\ 74 « mw [ 5 + a? 1+ _7,-0),) + Lht S
] = - 3 Y e o X
o mh =P 2h * 2 m ¢

satisfies the time-dependent Schrodinger equation for the harmonic oscillator
potential (Equation 2.43). Here a is any real constant with the dimensions of
length.*6

(b) Find |W(x, )|?, and describe the motion of the wave packet.

(c) Compute (x) and (p), and check that Ehrenfest’s theorem (Equation 1.38) is
satisfied.

* *Problem 2.50 Consider the moving delta-function well:
Vix,t) = —ad(x — vt),
where v is the (constant) velocity of the well.

(a) Show that the time-dependent Schrédinger equation admits the exact solution

W(x, 1 = v :la e—malx—wl/ﬁze—i[(E-Hl/2)mvz)l—mv.tj/h,
1

where E = —ma?/2h? is the bound-state energy of the stationary delta
function. Hint: Plug it in and check it! Use the result of Problem 2.24(b).

(b) Find the expectation value of the Hamiltonian in this state, and comment on
the result.

* % xProblem 2.51 Consider the potential

2.2

Ly

h<a
Vix) =—
m

sech? (ax),
where ¢ is a positive constant, and “sech” stands for the hyperbolic secant.
(a) Graph this potential.
(b) Check that this potential has the ground state
Yo (x) = A sech(ax).

and find its energy. Normalize v, and sketch its graph.

46T his rarc cxample of an exacl closed-form solution to the time-dependent Schridinger equation
was discovered by Schrédinger himself, in 1926,
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(c) Show that the function

Ur(x) =A (

ik —atanh(ax)\ .,

e,
ik +a '

(where k = /2mE/Hh, as usual) solves the Schridinger equation for any

(positive) energy E. Since tanhz — —1 as z - —o0,

Y (x) = Ae™ . for large negative x.

This represents, then, a wave coming in from the left with no accompany-
ing reflected wave (i.e., no term exp(—ikx)). What is the asymptotic form
of Yy (x) at large positive x? What are R and T, for this potential? Com-
ment: This is a famous example of a reflectionless potential —every incident
particle, regardless of its energy, passes right through.4’ .

Problem 2.52 The scattering matrix. The theory of scattering generalizes in
a pretty obvious way to arbitrary localized potentials (Figure 2.22). To the left
(Region I), V(x) =0, so

v 2mE

Y(x) = Ae™ + Be™*  where k = p [2.173]
{
To the right (Region III), V (x) is again zero, so
Y(x) = Fe™ 4+ Ge™**, [2.174]

In between (Region II), of course, I can’t tell you what i is until you specify the
potential, but because the Schrodinger equation is a linear, second-order differential
equation, the general solution has got to be of the form

¥(x) = Cf(x)+ Dg(x).

where f(x) and g(x) are two linearly independent particular solutions.*® There
will be four boundary conditions (two joining Regions I and II, and two joining

Aelkx V(x) Fe'kx
_— —_—
Beikx Ge*x
. >
I\ X
Region | Region Il Region Il

FIGURE 2.22: Scattering from an arbitrary localized potential (V(x) = 0 except in
Region II); Problem 2.52.

4R, E. Crandall and B. R. Lilt. Annals of Physics. 146. 458 (1983).

8Sce any book on differential equations— for example. J. L. Van Iwaarden. Ordinary Differential
Equations with Numerical Technigues. Harcourt Brace Jovanovich, San Diego, 1985, Chapter 3.
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Regions II and III). Two of these can be used to eliminate C and D, and the other
two can be *“solved” for B and F in terms of A and G:

B=S1A+812G. F =834+ 85»G.

The four coefficients §;;, which depend on & (and hence on E), constitute a 2 x 2
matrix S, called the scattering matrix (or S-matrix, for short). The S-matrix tells
you the outgoing amplitudes (B and F) in terms of the incoming amplitudes (A

and G):
BY _(Su Sn\[A
(F> B (521 Szz) (G) ‘ [2.175]

In the typical case of scattering from the left, G = 0, so the reflection and trans-
mission coefficients are

|BI? 2 |F|? 2
R = e =ISnl*. Ty = YE = |S21]". [2.176]
| I G=0 I I =0
For scattering from the right, A = 0, and
Ro=UEL Cjspp 2 BEL ysp [2.177]
r — —_— 21 - r — —_— 21 - .
1GI* 40 G140
(a) Construct the S-matrix for scattering from a delta-function well (Equa-
tion 2.114).

(b) Construct the S-matrix for the finite square well (Equation 2.145). Hint: This
requires no new work, if you carefully exploit the symmetry of the problem.

* % *Problem 2.53 The transfer matrix. The S-matrix (Problem 2.52) tells you the
outgoing amplitudes (B and F) in terms of the incoming amplitudes (A and
G)—Equation 2.175. For some purposes it is more convenient to work with the
transfer matrix, M, which gives you the amplitudes to the right of the potential
(F and G) in terms of those to the left (A and B):

FN _(Mn M A
(G) a (le Mzg) (B>- [2.178]

(a) Find the four elements of the M-matrix, in terms of the elements of the
S-matrix, and vice versa. Express R;, Tj, R,, and T, (Equations 2.176 and
2.177) in terms of elements of the M-matrix.

(b) Suppose you have a potential consisting of two isolated pieces (Figure 2.23).
Show that the M-matrix for the combination is the product of the two
M -matrices for each section separately:

M= M:M,. [2.179]

(This obviously generalizes to any number of pieces, and accounts for the
usefulness of the M-matrix.)
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M1 " NS M2 -
N p—— . v v/ ovm— —
V=0 V=0 V=0

x

FIGURE 2.23: A potential consisting of two isolated pieces (Problem 2.53).
(c) Construct the M-matrix for scattering from a single delta-function potential
at point a:
V(x) = —ad(x —a).

(d) By the method of part (b), find the M-matrix for scattering from the double
delta function

Vx)=—ald(x +a)+(x —a)l.

What is the transmission coefficient for this potential?

Problem 2.54 Find the ground state energy of the harmonic oscillator, to five sig-
nificant digits, by the “wag-the-dog” method. That is, solve Equation 2.72 numer-
ically, varying K until you get a wave function that goes to zero at large &. In
Mathematica, appropriate input code would be

Plot[Evaluate[u[x]/.NDSolve[{u”[x] -(x* - K)*u[x] == 0, u[0] == 1,
u’[0] == 0}, u[x], {x, 1078, 10}, MaxSteps -> 10000]], {x, a, b},
PlotRange -> {c, d}];
(Here (a. b) is the horizontal range of the graph, and (c, d) is the vertical range—
start with a =0, b = 10, ¢ = —10, d = 10.) We know that the correct solution is
K =1, so you might start with a “guess” of K = 0.9. Notice what the “tail” of the
wave function does. Now try K = 1.1, and note that the tail flips over. Somewhere

in between those values lies the correct solution. Zero in on it by bracketing K -

tighter and tighter. As you do so, you may want to adjust a, b, ¢, and d, to zero
in on the cross-over point.

Problem 2.55 Find the first three excited state energies (to five significant digits)

for the harmonic oscillator, by wagging the dog (Problem 2.54). For the first (and

third) excited state you will need to set u[0] == 0. «'[0] == 1.

Problem 2.56 Find the first four allowed energies (to five significant digits) for
the infinite square well, by wagging the dog. Hint: Refer to Problem 2.54, making
appropriate changes to the differential equation. This time the condition you are
looking for is u(1) = 0.




CHAPTER 3

FORMALISM

3.1 HILBERT SPACE

In the last two chapters we have stumbled on a number of interesting properties of
simple quantum systems. Some of these are “accidental” features of specific poten-
tials (the even spacing of energy levels for the harmonic oscillator, for example),
but others seem to be more general, and it would be nice to prove them once and
for all (the uncertainty principle, for instance, and the orthogonality of stationary
states). The purpose of this chapter is to recast the theory in a more powerful form,
with that in mind. There is not much here that is genuinely new; the idea, rather,
is to make coherent sense of what we have already discovered in particular cases.

Quantum theory is based on two constructs: wave functions and operators. The
state of a system is represented by its wave function, observables are represented
by operators. Mathematically, wave functions satisfy the defining conditions for
abstract vectors, and operators act on them as linear transformations. So the
natural language of quantum mechanics is linear algebra.!

But it is not, I suspect, a form of linear algebra with which you are immediately
familiar. In an N-dimensional space it is simplest to represent a vector, |«), by the
N-tuple of its components, {a,}, with respect to a specified orthonormal basis:

a
) —a=| . |. [3.1]

r you have never studied linear algebra, you should read the Appendix belore continuing.

93
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The inner product, (@|8), of two vectors (generalizing the dot product in three
dimensions) is the complex number,

(@|B) = ayb) +a3br+ - - -+ ayby. [3.2]

Linear transformations, T, are represented by matrices (with respect to the specified
basis), which act on vectors (to produce new vectors) by the ordinary rules of matrix
multiplication:

nr fHa - NN a
fy fha -+ DnhnN az

B)=Tle) >b=Ta=] . . . .- [3.3]
INL IN2 - INN aN

But the “vectors™ we encounter in quantum mechanics are (for the most part)
functions, and they live in infinite-dimensional spaces. For them the N-tuple/matrix
notation is awkward, at best, and manipulations that are well-behaved in the finite-
dimensional case can be problematic. (The underlying reason is that whereas the
finite sum in Equation 3.2 always exists, an infinite sum—or an integral —may not
converge, in which case the inner product does not exist, and any argument involving
inner products is immediately suspect.) So even though most of the terminology and
notation should be familiar, it pays to approach this subject with caution.

The collection of all functions of x constitutes a vector space, but for our
purposes it is much too large. To represent a possible physical state, the wave
function ¥ must be normalized:

f |\Il|2d.\‘ = 1.

The set of all square-integrable functions, on a specified interval,

b
f(x) such that f | F(O)? dx < oo. [3.4]

a
constitutes a (much smaller) vector space (see Problem 3.1(a)). Mathematicians
call it L, (a. b); physicists call it Hilbert space.® In quantum mechanics, then,

Wave functions live in Hilbert space. [3.5]

ZFor us. the limits (a and b) will almost always be + 0o, but we might as well keep things more
general for the moment.

Mechnically. a Hilbert space i$ a complete inner product space, and the collection of square-
integrable Tunctions is only one example of a Hilbert space—indeed, every finite-dimensional vector
space is trivially a Hilbert space. But since L3> is the arena of quantuin mechanics, it's what physieists
generally mean when they say “Hilbert spacc.” By the way, the word complete here means that any
Cauchy sequence of functions in Hilbert space converges o a function that is also in the space: it has no
“holes” in iL. just as the set of all real numbers has no holes (by contrast, the space of all polynomials,
for example, like the sct of all rational numbers. certainly does have holes in it). The completeness
of a space has nothing o do with the completeness (same word. unfortunately) of a ser of functions.
which is the property that any other function can be expressed as a linear combination of them.
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We define the inner product of two functions, f(x) and g(x), as follows:
b

(fley= | Fx)*glx)dx. [3.6]

If f and g are both square-integrable (that is, if they are both in Hilbert space),
their inner product is guaranteed to exist (the integral in Equation 3.6 converges to
a finite number).* This follows from the integral Schwarz inequality:>

b b b
f f(x)*g(x) d-’c" < \[f | f ()2 dxf lg(x)? dx. [3.7]

You can check for yourself that Equation 3.6 satisfies all the conditions for an inner
product (Problem 3.1(b)). Notice in particular that

(glf) = {flg)*. [3.8]

Moreover, the inner product of f(x) with itself,

b
FIF) = f 00 dx, [3.9]

is real and non-negative; it’s zero only® when f(x) = 0.

A function is said to be normalized if its inner product with itself is 1; two
functions are orthogonal if their inner product is 0; and a set of functions, {f,},
is orthonormal if they are normalized and mutually orthogonal:

(fm'fn) = ‘Snm- [3-10]

Finally, a set of functions is complete if any other function (in Hilbert space) can
be expressed as a linear combination of them:

SO =" cn fuld). [3.11]

n=l|

*In Chapter 2 we were obliged on occasion to work with functions that were nor normalizable.
Such functions lic outside Hilbert space, and we are going Lo have to handle them with special care, as
you will see shortly. For the moment, I shall assume that all the functions we encounter are in Hilbert
space.

SFor a proot, see F. Riesz and B. Sz.-Nagy. Funcrional Analysis (Unger, New York, 1955),
Section 21. In a finite dimensional vector space the Schwarz inequality, l((xlﬂ)l2 =< {a]a){B8IB). is

casy Lo prove (see Problem A.5). But that proof assumes the existence of the inner products, which is
precisely what we are trying to establish here.

6What about a function that is zero everywhere except at a few isolated points? The integral
(Equation 3.9) would still vanish, cven though the function itself does not. If this bothers you, you
should have been a math major. In physics such pathological functions do not occur, but in any case, in
Hilbert space two functions that have the same square integral are considered equivalent. Technically,
vectors in Hilbert space represent equivalence classes of functions.
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If the functions { f;, (x)} are orthonormal, the coefficients are given by Fourier’s trick:

cn = {ful f)- [3.12]

as you can check for yourself. I anticipated this terminology, of course, back
in Chapter 2. (The stationary states for the infinite square well (Equation 2.28)
constitute a complete orthonormal set on the interval (0. a); the stationary states
for the harmonic oscillator (Equation 2.67 or 2.85) are a complete orthonormal set
on the interval (—oo. 00).)

Problem 3.1

(a) Show that the set of all square-integrable functions is a vector space (refer
to Section A.1 for the definition). Hint: The main problem is to show that
the sum of two square-integrable functions is itself square-integrable. Use
Equation 3.7. Is the set of all normalized functions a vector space?

(b) Show that the integral in Equation 3.6 satisfies the conditions for an inner
product (Section A.2).

xProblem 3.2

(a) For what range of v is the function f(x) = x" in Hilbert space, on the
interval (0. 1)? Assume v is real, but not necessarily positive.

(b) For the specific case v = 1/2, is f(x) in this Hilbert space? What about
xf(x)? How about (d/dx) f(x)?

3.2 OBSERVABLES

3.2.1 Hermitian Operators

The expectation value of an observable Q(x. p) can be expressed very neatly in
inner-product notation:’

(0) =fwéwx= (W|0W). [3.13]

TRemember that @ is the operator constructed from Q by the replacement p — p = (h/i)d/dx.
These operators arc linear. in the sense that

Q[af(.\') + bg(x)] = le_f(.\') + 17Qg(.\').

for any tunctions / and g and any complex numbers « and b. They constitute linear transformations
(Scction A.3) on the space of all Tunctions. However. they sometimes carry a function inside Hilbert
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Now, the outcome of a measurement has got to be real, and so, a fortiori, is the
average of many measurements:

(Q) =(0)". [3.14]
But the complex conjugate of an inner product reverses the order (Equation 3.8), so
(WIQW) = (QW|¥). [3.15]

and this must hold true for any wave function W. Thus operators representing
observables have the very special property that

(FI0F) =(QfIf) forall f(x). [3.16]

We call such operators hermitian.
Actually, most books require an ostensibly stronger condition:

(F10g) = (O flg) forall f(x)and all g(x). [3.17]

But it turns out, in spite of appearances, that this is perfectly equivalent to my
definition (Equation 3.16), as you will prove in Problem 3.3. So use whichever
you like. The essential point is that a hermitian operator can be applied either to
the first member of an inner product or to the second, with the same result, and
hermitian operators naturally arise in quantum mechanics because their expectation
values are real:

Observables are represented by hermitian operators. [3.18]

Well, let’s check this. Is the momentum operator, for example, hermitian?
o hd h * (hdf\* . ,
B k= +f (fi) gdv=(pflg). [3.19]
—eo L dx i dx

I used integration by parts, of course, and threw away the boundary term for the
usual reason: If f(x) and g(x) are square integrable, they must go to zero at +o0.8

space into a function outside it (see Problem 3.2(b)). and in this cuse the domain of the operator may
have 1o be restricted.

h‘Actually. this is not quite true. As I mention in Chapter . there exist pathological functions
that are square-integrable but deo nor go to zero at infinity, However, such functions do not arise in
physics. and if you are worried about it we will simply restrict the domain of our operators to exclude
them. On fuiite intervals. though. you really do have to be more carcful with the boundary terms,
and an operator that is hermitian on (—o0. 00) may nor be hermitian on (0. co) or (—x, x). If you're
wondering about the infinite square well. it’s safest to think of these wave functions as residing on the
infinite line—they just happen to be zer outside (0. a).
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Notice how the complex conjugation of i compensates for the minus sign picked
up from integration by parts—the operator d/dx (without the 7) is not hermitian,
and it does not represent a possible observable.

«Problem 3.3 Show that if (h|Qh) = (Qh|h) for all functions / (in Hilbert space),
then (f |Qg) = (Of lg) for all f and g (i.e., the two definitions of “hermi-
tian”—Equations 3.16 and 3.17—are equivalent). Hint: First let h = f 4+ g, and
then let h = f +ig.

Problem 3.4

(a) Show that the sum of two hermitian operators is hermitian.

(b) Suppose 0 is hermitian, and « is a complex number. Under what condition
(on @) is & Q hermitian?

(c) When is the product of two hermitian operators hermitian?

(d) Show that the position operator (X = x) and the hamiltonian operator (H =
—(h? /2m)d?/dx* + V (x)) are hermitian.

Problgm 3.5 The hermitian conjugate (or adjoint) of an operator 0 is the oper-
ator Q" such that

(f108) = (0" flg) (for all f and g). [3.20]
(A hermitian operator, then, is equal to its hermitian conjugate: Q = o
(a) Find the hermitian conjugates of x, i, and d/dx.

(b) Construct the hermitian conjugate of the harmonic oscillator raising operator,
a4 (Equation 2.47).

(c) Show that (QI'\;)T = IQTQJF.

3.2.2 Determinate States

Ordinarily, when you measure an observable Q on an ensemble of identically
prepared systems, all in the same state W, you do not get the same result each
time—this is the indeterminacy of quantum mechanics.® Question: Would it be
possible to prepare a state such that every measurement of Q is certain to return
the same value (call it ¢)? This would be, if you like, a determinate state, for
the observable Q. (Actually, we already know one example: Stationary states are
determinate states of the Hamiltonian; a measurement of the total energy, on a

I'm talking about competent measurements, of course—it's always possible to make a mistake.
and simply get the wrong answer, but that’s not the fault of quantum mechanics.
ply g q
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particle in the stationary state W¥,, is certain to yield the corresponding *“‘allowed”
energy E,.)

Well, the standard deviation of Q, in a determinate state, would be zero, which
is to say,

o? = ((Q — (0N*) = (¥I(Q — 9)*¥) = (O — P¥I(Q — )¥) =0. [3.21]

(Of course, if every measurement gives ¢, their average is also ¢g: (Q) = ¢q. I also
used the fact that O, and hence also 0 — g, is a hermitian operator, to move one
factor over to the first term in the inner product.) But the only function whose inner
product with itself vanishes is 0, so

OV =qW. 3.22]

This is the eigenvalue equation for the operator O; ¥ is an eigenfunction of 0.
and ¢ is the corresponding eigenvalue. Thus

Determinate states are eigenfunctions of Q [3.23]

Measurement of Q on such a state is certain to yield the eigenvalue, .

Note that the eigenvalue is a number (not an operator or a function). You can
multiply any eigenfunction by a constant, and it is still an eigenfunction, with the
same eigenvalue. Zero does not count as an eigenfunction (we exclude it by defi-
nition—otherwise every number would be an eigenvalue, since 00= q0 =0 for
any operator Q and all ¢). But there’s nothing wrong with zero as an eigenvalue.
The collection of all the eigenvalues of an operator is called its spectrum. Some-
times two (or more) linearly independent eigenfunctions share the same eigenvalue;
in that case the spectrum is said to be degenerate.

For example, determinate states of the total energy are eigenfunctions of the
Hamiltonian: R

Hy = Ey. [3.24]

which is precisely the time-independent Schrédinger equation. In this context we
use the letter E for the eigenvalue, and the lower case ¥ for the eigenfunction (tack
on the factor exp(—i Et/h) to make it W, if you like; it’s still an eigenfunction
of H).

Example 3.1 Consider the operator
Q=i—, [3.25]
where ¢ is the usual polar coordinate in two dimensions. (This operator might arise

in a physical context if we were studying the bead-on-a-ring; see Problem 2.46.)
Is Q hermitian? Find its eigenfunctions and eigenvalues.
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Solution: Here we are working with functions f(¢) on the finite interval 0 < ¢ <
2w, and stipulate that

flo+2m) = f(¢). [3.26]

since ¢ and ¢ + 2 describe the same physical point. Using integration by parts,

e g 2 (24 s
00 = [ 7 (i55) o =irvsly — [ (L ) eao =10 110

so Q is hermitian (this time the boundary term disappears by virtue of Equation 3.26).
The eigenvalue equation,

I-CE] (@) =qf(9). [3.27]

has the general solution

f(@) = Ae714?, [3.28]
Equation 3.26 restricts the possible values of the ¢:
e =1 = ¢=0%1.%2,... [3.29]

The spectrum of this operator is the set of all integers, and it is nondegenerate.

Problem 3.6 Consider the operator O = d?/d¢?, where (as in Example 3.1)
¢ is the azimuthal angle in polar coordinates, and the functions are subject to
Equation 3.26. Is O hermitian? Find its eigenfunctions and eigenvalues. What is
the spectrum of Q? Is the spectrum degenerate?

3.3 EIGENFUNCTIONS OF A HERMITIAN OPERATOR

Our attention is thus directed to the eigenfunctions of hermitian operators (phys-
ically: determinate states of observables). These fall into two categories: If the
spectrum is discrete (i.e., the eigenvalues are separated from one another) then the
eigenfunctions lie in Hilbert space and they constitute physically realizable states.
If the spectrum is continuous (i.e., the eigenvalues fill out an entire range) then
the eigenfunctions are not normalizable, and they do not represent possible wave
functions (though linear combinations of them—involving necessarily a spread
in eigenvalues—may be normalizable). Some operators have a discrete spectrum
only (for example, the Hamiltonian for the harmonic oscillator), some have only a
continuous spectrum (for example, the free particle Hamiltonian), and some have
both a discrete part and a continuous part (for example, the Hamiltonian for a
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finite square well). The discrete case is easier to handle, because the relevant inner
products are guaranteed to exist—in fact, it is very similar to the finite-dimensional
theory (the eigenvectors of a hermitian smatriv). I'll treat the discrete case first, and
then the continuous one.

3.3.1 Discrete Spectra

Mathematically, the normalizable eigenfunctions of a hermitian operator have two
important properties:

Theorem 1: Their eigenvalues are real.
Proof: Suppose
Of =qf.
(i.e., f(x) is an eigenfunction of Q, with eigenvalue ¢), and!?
(F10) = (O f1f)

(Q is hermitian). Then

a{f1f) =q*(f1f)

(¢ is a number, so it comes outside the integral, and because the first function
in the inner product is complex conjugated (Equation 3.6), so too is the g on
the right). But (f|f) cannot be zero ( f(x) = 0 is not a legal eigenfunction),
so ¢ = q*, and hence ¢ is real. QED

This is comforting: If you measure an observable on a particle in a determinate
state, you will at least get a real number.

Theorem 2: Eigenfunctions belonging to distinct eigenvalues are ortho-
gonal.

Proof: Suppose
Of=qf and Qg=g'g.
and O is hermitian. Then (leg) = (QAflg), SO
a'(flg) =q*(flg)

(again, the inner products exist because the eigenfunctions are in Hilbert
space by assumption). But ¢ is real (from Theorem 1), so if ¢’ # ¢ it must
be that (f|g) =0. QED

101 is here that we assume the eigenfunctions arc in Hilbert spacc—otherwise the inner product
might not cxist at all.
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That’s why the stationary states of the infinite square well, for example, or the
harmonic oscillator, are orthogonal —they are eigenfunctions of the Hamiltonian
with distinct eigenvalues. But this property is not peculiar to them, or even to the
Hamiltonian—the same holds for determinate states of any observable.
Unfortunately, Theorem 2 tells us nothing about degenerate states (¢’ = ¢).
However, if two (or more) eigenfunctions share the same eigenvalue, any lin-

ear combination of them is itself an eigenfunction, with the same eigenvalue

(Problem 3.7(a)), and we can use the Gram-Schmidt orthogonalization proce-
dure (Problem A .4) to construct orthogonal eigenfunctions within each degenerate
subspace. It is almost never necessary to do this explicitly (thank God!), but it can
always be done in principle. So even in the presence of degeneracy the eigenfunc-
tions can be chosen to be orthogonal, and in setting up the formalism of quantum
mechanics we shall assume that this has already been done. That licenses the use
of Fourier’s trick, which depends on the orthonormality of the basis functions.

In a finite-dimensional vector space the eigenvectors of a hermitian matrix
have a third fundamental property: They span the space (every vector can be
expressed as a linear combination of them). Unfortunately, the proof does not
generalize to infinite-dimensional spaces. But the property itself is essential to the
internal consistency of quantum mechanics, so (following Dirac!'!) we will take it
as an axiom (or, more precisely, as a restriction on the class of hermitian operators

that can represent observables):

Axiom: The eigenfunctions of an observable operator are complete: Any
function (in Hilbert space) can be expressed as a linear combination of
them.!?

Problem 3.7

(a) Suppose that f(x) and g(x) are two eigenfunctions of an operator Q, with
the same eigenvalue ¢. Show that any linear combination of f and g is itself
an eigenfunction of Q. with eigenvalue gq.

(b) Check that f(x) = exp(x) and g(x) = exp(—x) are eigenfunctions of the
operator d>/dx>, with the same eigenvalue. Construct two linear combina-
tions of f and g that are orthogonal eigenfunctions on the interval (—1. 1).

'p A. M. Dirac. The Principles of Quanium Meclanics. Oxford University Press, New York
(1958).

I . . . N

PIn some specific cases completeness is provable (we know that the siationary states of the
infinite square well. for example. ure complete, because of Dirichlet’s theorem). It is a little awk-
ward (o call something an “axiom™ that is provable in some cases. but | don’t know a better way to
handle it
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Problem 3.8

(a) Check that the eigenvalues of the hermitian operator in Example 3.1 are real.
Show that the eigenfunctions (for distinct eigenvalues) are orthogonal.

(b) Do the same for the operator in Problem 3.6.

3.3.2 Continuous Spectra

If the spectrum of a hermitian operator is continuous, the eigenfunctions are not
normalizable, and the proofs of Theorems | and 2 fail, because the inner products
may not exist. Nevertheless, there is a sense in which the three essential properties
(reality, orthogonality, and completeness) still hold. I think it's best to approach
this subtle case through specific examples.

Example 3.2 Find the eigenfunctions and eigenvalues of the momentum operator.

Solution: Let f),(x) be the eigenfunction and p the eigenvalue:

hod o
lTE;f/)(-\) = pr(-l)- [3.30]

The general solution is
fp(x) = AeP/N,

This is not square-integrable, for any (complex) value of p—the momentum oper-
ator has no eigenfunctions in Hilbert space. And yet, if we restrict ourselves to
real eigenvalues, we do recover a kind of ersatz “orthonormality.” Referring to
Problems 2.24(a) and 2.26,

m x 3 1
f Fo(®) fpx)dx = |A) f e PPN gy = |A|2mh 8(p — p').  [3.31]
bl &) -

If we pick A = 1/+/2mh, so that

1 .
() = —— Ip.\/h. 3.32
Jp(x) me [ ]
then
(fplfp) =8(p—p). [3.33]

which is strikingly reminiscent of true orthonormality (Equation 3.10)—the indices
are now continuous variables, and the Kronecker delta has become a Dirac delta,
but otherwise it looks just the same. I'll call Equation 3.33 Dirac orthonormality.
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Most important, the eigenfunctions are complete, with the sum (in Equation 3.11)
replaced by an integral: Any (square-integrable) function f(x) can be written in
the form

00 1 % -
fx)= f c(p) fp(x)dp = Wit f c(p)eP " dp. [3.34]
x5 —-2C

The expansion coefficient (now a function, c(p)) is obtained, as always, by Fourier’s
trick:
o0

(fplf) :f C(p)(fp'lfp)dp=f c(p)S(p—pHdp =c(p’). [3.35]

-0 -G

Alternatively, you can get them from Plancherel’s theorem (Equation 2.102), for
the expansion (Equation 3.34) is nothing but a Fourier transform.

The eigenfunctions of momentum (Equation 3.32) are sinusoidal, with wave-

length
2nth

=
This is the old de Broglie formula (Equation 1.39), which I promised to prove at
the appropriate time. It turns out to be a little more subtle than de Broglie imagined,
because we now know that there is actually 1o such thing as a particle with deter-
minate momentum. But we could make a normalizable wave packet with a narrow
range of momenta, and it is to such an object that the de Broglie relation applies.

What are we to make of Example 3.2? Although none of the eigenfunctions
of p lives in Hilbert space, a certain family of them (those with real eigenvalues)
reside in the nearby “suburbs,” with a kind of quasi-normalizability. They do not
represent possible physical states, but they are still very useful (as we have already
seen, in our study of one-dimensional scattering).l3

A [3.36]

Example 3.3 Find the eigenfunctions and eigenvalues of the position operator.

Solution: Let g,(x) be the eigenfunction and y the eigenvalue:

X gy(x) =y gy(x). [3.37]

I3What about the cigenfunctions with nonreal cigenvalues? These are not merely non-
normalizable—they actually blow up at +oc. Functions in what | called the “'suburbs™ of Hilbert space
(the entire metropolitan area is sometimes called a “rigged Hilbert space”: see. for example, Leslie
Ballentine's Quantum Mechanics: A Modern Development, World Scientific, 1998) have the property
that although they have no (finite) inner product with themselves, they do admit inner products with all
members of Hilbert space. This is not true for eigenfunctions of p with nonreal eigenvalues. In particu-
lar. T showed that the momentum operator is hermitian for functions in Hilbert space. but the argument
depended on dropping the boundary term (in Equation 3.19). That term is still zero if g is an eigenfunc-
tion of p with a real eigenvalue (as long as f is in Hilbert space), but not if the eigenvalue has an imag-
inary part. In this sense any complex number is an eigenvalue of the operator p, but only real numbers
are eigenvalues of the hermitian operator p—the others lic outside the space over which p is hermitian.
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Here y is a fixed number (for any given eigenfunction), but x is a continuous
variable. What function of x has the property that multiplying it by x is the same
as multiplying it by the constant y? Obviously it's got to be zero, except at the one
point x = y; in fact, it is nothing but the Dirac delta function:

gy(x) = A8(x — ).

This time the eigenvalue has to be real; the eigenfunctions are not square-integrable,
but again they admit Dirac orthonormality:

o0 o
/ g’:,(x) gy(x)dx = IAlzf S(x —v)8(x — y)dx = |A|28(y —y). [3.38]
0 —0Q

If we pick A=1, so
gy(x) =38(x — y). [3.39]

then
(gy'|g_\') =68(y — .V’)- [3.40]

These eigenfunctions are also complete:

.f(x)=/. c(y) g,v(-\‘)d.v=f | c(3)8(x — ¥)dy, [3.41]
-0 -0
with

c(») = f(y) [3.42]

(trivial, in this case, but you can get it from Fourier's trick if you insist).

If the spectrum of a hermitian operator is continuous (so the eigenvalues are
labeled by a continuous variable— p or y. in the examples; z, generically, in what
follows), the eigenfunctions are not normalizable, they are not in Hilbert space and
they do not represent possible physical states; nevertheless, the eigenfunctions with
real eigenvalues are Dirac orthonormalizable and complete (with the sum now an
integral). Luckily, this is all we really require.

Problem 3.9

(a) Cite a Hamiltonian from Chapter 2 (other than the harmonic oscillator) that
has only a discrete spectrum.

(b) Cite a Hamiltonian from Chapter 2 (other than the free particle) that has only
a continuous spectrum.
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(c) Cite a Hamiltonian from Chapter 2 (other than the finite square well) that
has both a discrete and a continuous part to its spectrum.

Problem 3.10 Is the ground state of the infinite square well an eigenfunction of
momentum? If so, what is its momentum? If not, why not?

3.4 GENERALIZED STATISTICAL INTERPRETATION

In Chapter 1 I showed you how to calculate the probability that a particle would be
found in a particular location, and how to determine the expectation value of any
observable quantity. In Chapter 2 you learned how to find the possible outcomes
of an energy measurement and their probabilities. I am now in a position to state
the generalized statistical interpretation, which subsumes all of this and enables
you to figure out the possible results of any measurement, and their probabilities.
Together with the Schrédinger equation (which tells you how the wave function
evolves in time) it is the foundation of quantum mechanics.

Generalized statistical interpretation: If you measure an observable Q (x, p)
on a particle in the state W(x.t), you are certain to get one of the eigenvalues of
the hermitian operator Q(-x. —ihd /dx). If the spectrum of O is discrete, the prob-
ability of getting the particular eigenvalue ¢, associated with the orthonormalized
eigenfunction f;(x) is

lcal®. where ¢, = (fu|¥). [3.43]

If the spectrum is continuous, with real eigenvalues ¢(z) and associated Dirac-
orthonormalized eigenfunctions f-(x), the probability of getting a result in the
range dz is

lc(2)|*dz  where c(z) = (f:|¥). [3.44]

Upon measurement, the wave function “collapses” to the corresponding eigen-

14
state.

The statistical interpretation is radically different from anything we encounter
in classical physics. A somewhat different perspective helps to make it plausible:
The eigenfunctions of an observable operator are complete, so the wave function
can be written as a linear combination of them:

W(x. 1) =D cuful). [3.45)

I41n the casc of continuous spectra the collapse is 1o a narrow range about the measured value,
depending on the precision of the measuring device.
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(For simplicity, I'll assume that the spectrum is discrete; it’s easy to generalize this
argument to the continuous case.) Because the eigenfunctions are orthonormal, the
coefficients are given by Fourier’s trick:!’

e = (fulU) = f £ () W, 1) dx. [3.46]

Qualitatively, ¢, tells you “how much f, is contained in W,” and given that a
measurement has to return one of the eigenvalues of 0O, it seems reasonable that
the probability of getting the particular eigenvalue g, would be determined by the
“amount of f;,” in W. But because probabilities are determined by the absolute
square of the wave function, the precise measure is actually lcn|?. That’s the
essential burden of the generalized statistical interpretation.!®
Of course, the toral probability (summed over all possible outcomes) has got
to be one:
Y el =1. [3.47]

"

and sure enough, this follows from the normalization of the wave function:

L= (W) = (D cntv } Yoenfu ) ) =D el furl fi)
n’ n

n' H

2
= Z C;';'cllall'll = ZC:Cn = Z leu ™. [3.48]
n n

n' n

Similarly, the expectation value of Q should be the sum over all possible outcomes
of the eigenvalue times the probability of getting that eigenvalue:

Q)= quleul™. [3.49]
Indeed,
(0) = (WIQW) = (| D ewfu )|[ QD cnt])) [3.50]

I5Notice that the time dependence—which is not at issue here—is carried by the coefficients;
to make this explicit. we should really write ¢, (1).

16 Again. I am scrupulously avoiding the all-loo-common assertion “ley |2 is the probability that
the particle is in the state f;.” This is nonsense. The particle is in the stale W, period. Rather, |c-,,|2 is
the probability that a measurement of Q would yield the value ¢,. It is true that such a measurement

will collapse the state to the eigenfunction £y, so onc could correctly say *|¢y |2 is the probability that
a particle which is now in the state ¥ will be in the state f,; subsequent to a measurement of 97 ...
but that’s a completely different assertion.
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but 0f, = CInf;:, SO

(Q) = Z Z C:'C'I:C/l:<ﬁ:’|f;:) = Z ZC:’CHC.IHSII'H = Z‘hz'cnlz- (3.51]
n n n n

n

So far, at least, everything looks consistent.

Can we reproduce, in this language, the original statistical interpretation for
position measurements? Sure—it’s real overkill, but worth checking. A measure-
ment of x on a particle in state ¥ must return one of the eigenvalues of the
position operator. Well, in Example 3.3 we found that every (real) number y is an
eigenvalue of x, and the corresponding (Dirac-orthonormalized) eigenfunction is
gy(x) = 8(x — y). Evidently

oG

c(¥) =(g|¥) = / S(x — MW(x.Ddx = W(y. 1), [3.52]

—oC

so the probability of getting a result in the range dy is |¥(y.1)|*dy, which is
precisely the original statistical interpretation.

What about momentum? In Example 3.2 we found that the eigenfunctions of
the momentum operator are f,(x) = (1/+/2mh)exp(ipx/h), so

1

J2mh

This is such an important quantity that we give it a special name and symbol: the
momentum space wave function, ®(p. 1). It is essentially the Fourier transform
of the (position space) wave function W (x, r)—which, by Plancherel’s theorem,
is its inverse Fourier transform:

x0
c(p) = (fp|¥) = f e Py (x. ) dx. [3.53]

1 e
d(p.t) = \/Z—J—r_ﬁ_/ e Py (x 1) dx; [3.54]
’ —20
| o
W(x,t) = \/i?ﬁf e""‘/”fb(p.,t)dp. [3.55]
: -0

According to the generalized statistical interpretation, the probability that a mea-
surement of momentum would yield a result in the range dp is

|®(p, 1)* dp. [3.56]

Example 3.4 A particle of mass m is bound in the delta function well V(x) =
—ad(x). What is the probability that a measurement of its momentum would yield
a value greater than py = ma/h?
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Solution: The (position space) wave function is (Equation 2.129)

s/ mo  _ 2 .
P me|x|/h e 1Et/h

Y(x,t) = P

(where E = —ma?/2h?%). The momentum space wave function is therefore

3/2 _iEt/B

O(p,t) = L mo g [ —ipxh mmedeiyn? g, 2 py e E
P, - e e e X = . .
J2rh h oo xRt

(I looked up the integral). The probability, then, is

o0
2 0 1 1
_”‘3’[ ———dp = — | 2+ tan”! (£>
T " Jpe (P7+ Pyl T p+ Py Po/ 11,
1 1
= - — — =0.0908
4 2n

(again, I looked up the integral).

Problem 3.11 Find the momentum-space wave function, ®(p, t), for a particle in
the ground state of the harmonic oscillator. What is the probability (to 2 significant
digits) that a measurement of p on a particle in this state would yield a value
outside the classical range (for the same energy)? Hint: Look in a math table
under “Normal Distribution” or “Error Function” for the numerical part—or use
Mathematica.

Problem 3.12 Show that
(x) = f d* (—-Ei> ddp. [3.57]

Hint: Notice that x exp(ipx/h) = —ih(d/dp)exp(ipx/h).
In momentum space, then, the position operator is i#9/dp. More generally,

”~ r a
f v*0 (x, —Ia> Wdx,  in position space;
i

(Qx. p)) = [3.58]

A h o
f d*Q (—-—15— p) ®dp, in momentum space.
i 3p

In principle you can do all calculations in momentum space just as well (though
not always as easily) as in position space.
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3.5 THE UNCERTAINTY PRINCIPLE

I stated the uncertainty principle (in the form oyo, > 7/2), back in Section 1.6,
and you have checked it several times, in the problems. But we have never actually
proved it. In this section I will prove a more general version of the uncertainty
principle, and explore some of its implications. The argument is beautiful, but
rather abstract, so watch closely.

3.5.1 Proof of the Generalized Uncertainty Principle

For any observable A, we have (Equation 3.21);
o2 = (A — (ADY|(A - (ADW) = (fIf),

where f = (/i — (A))W. Likewise, for any other observable, B,

oé = (g|g), where g = (I§ — (B))V.

Therefore (invoking the Schwarz inequality, Equation 3.7),

o3k = (FIf)elg) = I{fle)*. [3.59]

Now, for any complex number z,
) 1 2
21> = [Re(2)]* + [Im(2))* = [Im(2)]* = [5@ — z*)] : [3.60]

Therefore, letting z = (f|g),

) 2 1 2
OA0p = (5[<f|g) — <g|f)]) : [3.61]

But

Similarly,
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SO
(flg) — (gl f) = (AB) — (BA) = ([A, B)),
where
[A.B1=AB - BA

is the commutator of the two operators (Equation 2.48). Conclusion:

2 (1, s s
ﬁ%z(gm&mg. [3.62]

This is the (generalized) uncertainty principle. You might think the i makes it
trivial—isn’t the right side negative? No, for the commutator of two hermitian
operators carries its own factor of i, and the two cancel out.!”

As an example, suppose the first observable is position (A = x), and the
second is momentum (1§ = (h/i)d/dx). We worked out their commutator back in
Chapter 2 (Equation 2.51):

So

2 2 (1. _(h)
0:0, = z—izh =\3)

or, since standard deviations are by their nature positive,

r
@%>%, [3.63]

That’s the original Heisenberg uncertainty principle, but we now see that it is just
one application of a much more general theorem.

There is, in fact, an “uncertainty principle” for every pair of observables whose
operators do not commute—we call them incompatible observables. Incompatible
observables do not have shared eigenfunctions—at least, they cannot have a com-
plete set of common eigenfunctions (see Problem 3.15). By contrast, compatible
(commuting) observables do admit complete sets of simultaneous eigenfunctions. '8

17 More precisely, the commutator of two hermitian operators is itself anti-hermitian (0" =-0.
and its expectation value is imaginary (Problem 3.26).

18 This corresponds to the fact that noncommuting matrices cannot be simultaneously diagonalized
(that is, they cannot both be brought to diagonal form by the same similarity transformation), whereas
commulting hermitian matrices can be simultaneously diagonalized. See Section A.5.
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For example, in the hydrogen atom (as we shall see in Chapter 4) the Hamilto-
nian, the magnitude of the angular momentum, and the z component of angular
momentum are mutually compatible observables, and we will construct simultane-
ous eigenfunctions of all three, labeled by their respective eigenvalues. But there is
no eigenfunction of position that is also an eigenfunction of momentum, because
these operators are incompatible.

Note that the uncertainty principle is not an extra assumption in quantum
theory, but rather a consequence of the statistical interpretation. You might wonder
how it is enforced in the laboratory—why can’t you determine (say) both the
position and the momentum of a particle? You can certainly measure the position
of the particle, but the act of measurement collapses the wave function to a narrow
spike, which necessarily carries a broad range of wavelengths (hence momenta)
in its Fourier decomposition. If you now measure the momentum, the state will
collapse to a long sinusoidal wave, with (now) a well-defined wavelength—but
the particle no longer has the position you got in the first measurement.!® The
problem, then, is that the second measurement renders the outcome of the first
measurement obsolete. Only if the wave function were simultaneously an eigenstate
of both observables would it be possible to make the second measurement without
disturbing the state of the particle (the second collapse wouldn’t change anything,
in that case). But this is only possible, in general, if the two observables are
compatible.

«Problem 3.13

(a) Prove the following commutator identity:
[AB.C]= A[B.C]+[A.C]B. [3.64]

(b) Show that
[x". p] = ihnx"~".

(c) Show more generally that

- [3.65]
dx

d
LF (), pl = in

for any function f(x).

'¥Niels Bohr was at pains to track down the mechanism by which the measurcment of x (for
instance) destroys the previously existing value of p. The crux of the matter is that in order to determine
the position of a particle you have to poke it with something—shine light on it. say. But these photons
impart to the particle a momentum you cannot control. You now know the position, but you no longer
know the momentum. His famous debates with Einstein include many delightful examples. showing
in detail how experimental constraints enforce the uncertainty principle. For an inspired account see
Bohr's article in Albert Einstein: Philosopher-Scientist. cdited by P. A. Schilpp, Tudor, New York
(1949).
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*xProblem 3.14 Prove the famous “(your name) uncertainty principle,” relating the

uncertainty in position (A = x) to the uncertainty in energy (B = p*/2m + V)
h
oy > — .
0x0H =2 2m|< p)l

For stationary states this doesn’t tell you much—why not?

Problem 3.15 Show that two noncommuting operators cannot have a complete set
of common eigenfunctions. Hint: Show that if P and O have a complete set of
common eigenfunctions, then [P, Q]f = 0 for any function in Hilbert space.

3.5.2 The Minimum-Uncertainty Wave Packet

We have twice encountered wave functions that hit the position-momentum
uncertainty limit (oy0, = /i/2): the ground state of the harmonic oscillator
(Problem 2.11) and the Gaussian wave packet for the free particle (Problem 2.22).
This raises an interesting question: What is the most general minimum-uncertainty
wave packet? Looking back at the proof of the uncertainty principle, we note that
there were two points at which inequalities came into the argument: Equation 3.59
and Equation 3.60. Suppose we require that each of these be an equality, and see
what this tells us about W.

The Schwarz inequality becomes an equality when one function is a multi-
ple of the other: g(x) = cf(x), for some complex number ¢ (see Problem A.5).
Meanwhile, in Equation 3.60 I threw away the real part of z; equality results if
Re(z) = 0, which is to say, if Re(f|g) = Re(c(f|f)) = 0. Now, (f|f) is certainly
real, so this means the constant ¢ must be purely imaginary—let’s call it ia. The
necessary and sufficient condition for minimum uncertainty, then, is

g(x) =iaf(x)., where a is real. [3.66]
For the position-momentum uncertainty principle this criterion becomes:
h d
(7”— _ (p)) W = ia(x — (x))W. [3.67]
[ dx

which is a differential equation for ¥ as a function of x. Its general solution
(Problem 3.16) is
W(x) = Ae—a(.\‘—(.\'))z/.?hei(p),\‘/ﬁ' [368]

Evidently the minimum-uncertainty wave packet is a gaussian—and the two exam-
' . 3 2
ples we encountered earlier were gaussians.2’

ONote that it is only the dependence of ¥ on v that is at issue here—the “constants™ A. «a. {v).
and (p) may all be functions of time. and for that matter ¥ may evolve away {rom the minimal {form.
All I'm asserting is that if, at some instant. the wave function is gaussian in .v. then (at that instant) the
uncertainty product is minimal.
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Problem 3.16 Solve Equation 3.67 for W(x). Note that (x) and {p) are constants.

3.5.3 The Energy-Time Uncertainty Principle

The position-momentum uncertainty principle is often written in the form

Ax Ap > = [3.69]

Ax (the “uncertainty” in x) is loose notation (and sloppy language) for the standard

deviation of the results of repeated measurements on identically prepared systems.?!

Equation 3.69 is often paired with the energy-time uncertainty principle,
h
mAEz%. [3.70]

Indeed, in the context of special relativity the energy-time form might be thought
of as a consequence of the position-momentum version, because x and f (or
rather, ct) go together in the position-time four-vector, while p and E (or rather,
E/c) go together in the energy-momentum four-vector. So in a relativistic theory
Equation 3.70 would be a necessary concomitant to Equation 3.69. But we’re not
doing relativistic quantum mechanics. The Schrédinger equation is explicitly non-
relativistic: It treats r and x on a very unequal footing (as a differential equation
it is first-order in r, but second-order in x), and Equation 3.70 is emphatically rot
implied by Equation 3.69. My purpose now is to derive the energy-time uncertainty
principle, and in the course of that derivation to persuade you that it is really an
altogether different beast, whose superficial resemblance to the position-momentum
uncertainty principle is actually quite misleading.

After all, position, momentum, and energy are all dynamical variables—
measurable characteristics of the system, at any given time. But time itself is
not a dynamical variable (not, at any rate, in a nonrelativistic theory): You don’t
go out and measure the “time” of a particle, as you might its position or its energy.
Time is the independent variable, of which the dynamical quantities are func-
tions. In particular, the At in the energy-time uncertainty principle is not the
standard deviation of a collection of time measurements; roughly speaking (I'll
make this more precise in a moment) it is the time it takes the system to change
substantially.

2 Many casual applications of the uncertainty principle are actually based (often inadvertently) on
a completely different—and sometimes quite unjustified—measure of “uncertainty.” Conversely. some
perfectly rigorous arguments use other definitions of “uncertainty.” See Jan Hilgevoord. Am. J. Phys.
70, 983 (2002).
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As a measure of how fast the system is changing, let us compute the time
derivative of the expectation value of some observable, Q(x. p, 1):

d  d 90 - OW
Q=g _“”>+<‘I’JQ )

A V|
(\PIQ\P)=<§|Q\P>+<\P Y Y

Now, the Schrédinger equation says

h— = HY
Har

(where H = p?/2m + V is the Hamiltonian). So

L o= L awion + Lwioie + 22
E<Q)_ ih(H‘PIQ‘I’)+ih(‘I’|QH‘1’)+<at>-

But H is hermitian, so (H\IIIQ\I/) = (WIﬁQW), and hence

B 30
—(0) = g“H‘ ) +<a—r>. [3.71]

This is an interesting and useful result in its own right (see Problems 3.17 and
3.31). In the typical case where the operator does not depend explicitly on time,?2
it tells us that the rate of change of the expectation value is determined by the
commutator of the operator with the Hamiltonian. In particular, if Q commutes
with H, then (Q) is constant, and in this sense Q is a conserved quantity.

Now, suppose we pick A = H and B = (, in the generalized uncertainty
principle (Equation 3.62), and assume that Q does not depend explicitly on :

2 (1~ A NP (TRAON: B\ (d(O))?
b= (o) =(3757) = (3) ()

Or, more simply,

ol

(e}

h|d{Q)
> — X 3.72
OHOQ Z 5 |~ [3.72]
Let’s define AE = oy, and
ogp
At= ——=——, [3.73]
|d{Q)/dt|

22Ope:ralors that depend explicitly on t are quile rare. so almost ahvays i)Q /ot = 0. As an
example of explicit ime dependence. consider the potential energy of a harmonic oscillator whose
spring constant is changing (perhaps the temperature is rising. so the spring becomes more flexible):

0 = (1/2)mlw(n]Px2.
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Then .
AE At > 5 [3.74]

and that’s the energy-time uncertainty principle. But notice what is meant by At,
here: Since

d(Q)
op = l I ' At,
At represents the amount of time it takes the expectation value of Q to change by
one standard deviation.?® In particular, At depends entirely on what observable
(Q) you care to look at—the change might be rapid for one observable and slow
for another. But if AE is small, then the rate of change of all observables must be
very gradual; or, to put it the other way around, if any observable changes rapidly,
the “uncertainty” in the energy must be large.

Example 3.5 In the extreme case of a stationary state, for which the energy is
uniquely determined, all expectation values are constant in time (AE = 0 =
At = oo)—as in fact we noticed some time ago (see Equation 2.9). To make
something happen you must take a linear combination of at least two stationary
states—say:

W(x, 1) = ay (e EVN 4 by (x)e T E2IT,
If a, b, ¥y, and Y, are real,

) 2 2 2 ——E _
W (x, D> = a® (Y1 (X)) + B> (Y2 (x))* + 2abir; (x)ya(x) cos ( : p 2 r) .

The period of oscillation is T = 27/ /(E2 — E). Roughly speaking, AE = E;—E)
and Ar = t (for the exact calculation see Problem 3.18), so

AFE At =2 h,
which is indeed >4 /2.

Example 3.6 How long does it take a free-particle wave packet to pass by a partic~
ular point (Figure 3.1)? Qualitatively (an exact version is explored in Problem 3.19),
At = Ax/v =mAx/p,but E = p?/2m, so AE = pAp/m. Therefore,

PAp mAx

AE Ar = = AxAp,

m

which is >/ /2 by the position-momentum uncertainty principle.

23This is sometimes called the “Mandelstam-Tamm™ formulation of the energy-time uncertainty
principle. For a review ol alternative approaches see Paul Busch, Found. Phys. 20, 1 (1990).
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A

Ax >|

A X

FIGURE 3.1: A free particle wave packet approaches the point A (Example 3.6).

Example 3.7 The A particle lasts about 10723 seconds, before spontaneously
disintegrating. If you make a histogram of all measurements of its mass, you get
a kind of bell-shaped curve centered at 1232 MeV/c?, with a width of about 120
MeV/c? (Figure 3.2). Why does the rest energy (mc>) sometimes come out higher
than 1232, and sometimes lower? Is this experimental error? No, for

1
AFE At = (%0 MeV) (10~23 sec) = 6 x 10722 MeV sec,

whereas /1/2 = 3 x 10722 MeV sec. So the spread in m is about as small as the
uncertainty principle allows—a particle with so short a lifetime just doesn’t have
a very well-defined mass.?*

T l I >

1100 1200 1300 1400
MASS (MeV/c?)

FIGURE 3.2: Histogram of measurements of the A mass (Example 3.7).

24Actually, Example 3.7 is a bit of a fraud. You can't measure 10~ sec on a stop-watch, and in
practice the lifetime of such a short-lived particle is inferred from the width of the mass plot, using the
uncertainty principle as input. However, the point is valid, even if the logic is backwards. Moreover,
if you assume the A is about the same size as a proton (~10~19 m), then 10723 sec is roughly the
time it takes light to cross the particle. and it's hard to imagine that the lifetime could be much less
than that.
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Notice the variety of specific meanings attaching to the term At in these
examples: In Example 3.5 it’s a period of oscillation; in Example 3.6 it’s the time
it takes a particle to pass a point; in Example 3.7 it’s the lifetime of an unstable
particle. In every case, however, Ar is the time it takes for the system to undergo
“substantial” change.

It is often said that the uncertainty principle means energy is not strictly
conserved in quantum mechanics—that you're allowed to “borrow” energy AFE,
as long as you “pay it back™ in a time Ar = #/i/(2AE); the greater the violation,
the briefer the period over which it can occur. Now, there are many legitimate
readings of the energy-time uncertainty principle, but this is not one of them.
Nowhere does quantum mechanics license violation of energy conservation, and
certainly no such authorization entered into the derivation of Equation 3.74. But the
uncertainty principle is extraordinarily robust: It can be misused without leading
to seriously incorrect results, and as a consequence physicists are in the habit of
applying it rather carelessly.

*Problem 3.17 Apply Equation 3.71 to the following special cases: (a) Q = 1,
(b) Q = H; (c) O = x; (d) Q = p. In each case, comment on the result,
with particular reference to Equations 1.27, 1.33, 1.38, and conservation of energy
(comments following Equation 2.39).

Problem 3.18 Test the energy-time uncertainty principle for the wave function in
Problem 2.5 and the observable x, by calculating oy, oy, and d{x)/dt exactly.

Problem 3.19 Test the energy-time uncertainty principle for the free particle wave
packet in Problem 2.43 and the observable x, by calculating oy, o,, and d{(x)/dt
exactly.

Problem 3.20 Show that the energy-time uncertainty principle reduces to the “your
name” uncertainty principle (Problem 3.14), when the observable in question is x.

3.6 DIRAC NOTATION

Imagine an ordinary vector A in (wo dimensions (Figure 3.3(a)). How would you
describe this vector to someone? The most convenient way is to set up carte-
sian axes, x and y, and specify the components of A: Ay =7 -A A, = -A
(Figure 3.3(b)). Of course, your sister might have drawn a different set of axes,
x’ and y’, and she would report different components: A\, =i"-A. A, =] - A
(Figure 3.3(c)). But it’s all the same vector—we’re simply expressing it with
respect to two different bases ({1, J} and {i’, }'}). The vector itself lives “out there
in space,” independent of anybody’s (arbitrary) choice of coordinates.



Section 3.6: Dirac Notation 119

A, | X
(a) (b) ()

FIGURE 3.3: (a) Vector A. (b) Components of A with respect to xy axes.
(c) Components of A with respect to x’y’ axes.

The same is true for the state of a system in quantum mechanics. It is rep-
resented by a vector, |4(t)), that lives ““out there in Hilbert space,” but we can
express it with respect to any number of different bases. The wave function W (x. t)
is actually the coefficient in the expansion of |4) in the basis of position eigen-
functions:

W(x, 1) = (x|4(1)). [3.75]

(with |x) standing for the eigenfunction of & with eigenvalue x),>> whereas the
momentum space wavefunction ®(p.r) is the expansion of |§) in the basis of
momentum eigenfunctions:

Q(p.1) = (pl8()) [3.76]

(with |p) standing for the eigenfunction of p with eigenvalue p).2® Or we could
expand |4) in the basis of energy eigenfunctions (supposing for simplicity that the
spectrum is discrete):

cn(t) = (n|8(1)) [3.77]

(with |n) standing for the nth eigenfunction of H )—Equation 3.46. But it’s all the
sae state; the functions W and &, and the collection of coefficients {c,}, contain
exactly the same information—they are simply three different ways of describing
the same vector:

W(x, 1) = / W(v. 1)8(x — v)dy = / o (p. r)r/—zl_ge""-"/” dp

= cue Bty (), [3.78]

351 don’t want to call it &y (Equation 3.39). because that is its form in the position basis, and
the whole point here is to {ree oursclves from any particular basis. Indeed. when [ first defined Hilbert
space as the set of squarc-intcgrable [unctions—over x—that was already too restrictive. comnitting
us to a specific representation (the position basis). | want now to think of it as an abstract vector space.
whose members can be expressed with respect to any basis vou like.

61n position space it would be Jp(x) (Equation 3.32),
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Operators (representing observables) are linear transformations—they *‘trans-
form” one vector into another:

18) = Ola). [3.79]

Just as vectors are represented, with respect to a particular basis {|e,)}.>” by their
components,

la) = Zan|en)- with a;, = (e;la): |B) = an|en)e with b, = (enllB)s [3.80]
n n

operators are represented (with respect to a particular basis) by their matrix ele-
28
ments-

(em|Olen) = Q- [3.81]
In this notation Equation 3.79 takes the form
Y bulen) =Y anQOlen). [3.82]
n n
or, taking the inner product with |e,,),
an(emk’n) = Zan(em|é|en)~ [3.83]
n n
and hence
by = Z Qnman- [3-84]
n

Thus the matrix elements tell you how the components transform.

Later on we will encounter systems that admit only a finite number (N) of
linearly independent states. In that case |4(r)) lives in an N-dimensional vector
space; it can be represented as a column of (N) components (with respect to a
given basis), and operators take the form of ordinary (N x N) matrices. These
are the simplest quantum systems—none of the subtleties associated with infinite-
dimensional vector spaces arise. Easiest of all is the two-state system, which we
explore in the following example.

Example 3.8 Imagine a system in which there are just nvo linearly independent

states: 22
1 0
1) = (0> and |2) = (1> .

9 . . . . . . .
2711l assume the basis is discrete; otherwisc n becomes a continuous index and the sums arc
replaced by integrals.

“8This terminology is inspired. obviously. by the [inite-dimensional case, but the “matrix™ will
now typically have an infinite (maybe cven uncountable) number of elements.

:gTechnically. the “equals™ signs here mean “is represented by.” but I don’t think any confusion
will arise if we adopt the customary informal notation.
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The most general state is a normalized linear combination:
18) = a|1) + b[2) = (‘;) . with |a* + |6 = 1.

The Hamiltonian can be expressed as a (hermitian) matrix; suppose it has the

specific form
H— (h g) ,
g h

where g and h are real constants. If the system starts out (at + = 0) in state |1),
what is its state at time t?

Solution: The (time-dependent) Schrodinger equation says
ihi|5) = H|3¥) [3.85]
h18) = : .
As always, we begin by solving the time-independent Schrédinger equation:
H|s) = E|s); [3.86]

that is, we look for the eigenvectors and eigenvalues of H. The characteristic
equation determines the eigenvalues:

det(h;E hig.E)=(/1—E)2—g2=0=>h—5=¢8=>5i=”ig-

Evidently the allowed energies are (7 + g) and (% — g). To determine the eigen-
vectors, we write

(Z i) (g):mi‘g)(g) =>ha+gf=htga=p==Ta

so the normalized eigenvectors are

()

Next we expand the initial state as a linear combination of eigenvectors of the
Hamiltonian:

1
80) = ((1)) = 5 (1) +15-)).

Finally, we tack on the standard time-dependence exp(—i E,t/h):

1
/2

[e—l'(h+g)f/}i|d’+) + e—i(]l—g)t/ﬁ|4_)]

14(1) =
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= le—iht/h [e—igl/h (}) +e,‘g,/ﬁ ( ]1):|
2 -
= le—ihr/h e"':g'/h + e':g'/ﬁ — =it/ cos(gt/h)
2 e 81/ — 8t/ —isin(gt/h) )"

If you doubt this result, by all means check it: Does it satisfy the time-dependent
Schrédinger equation? Does it match the initial state when r = 0?

This is a crude model for (among other things) neutrino oscillations. In
that case |1) represents the electron neutrino, and |2) the muon neutrino; if the
Hamiltonian has a nonvanishing off-diagonal term (g) then in the course of time
the electron neutrino will turn into a muon neutrino (and back again).

Dirac proposed to chop the bracket notation for the inner product, («|f8), into
two pieces, which he called bra, («|, and ket, |8) (I don’t know what happened to
the ¢). The latter is a vector, but what exactly is the former? It’s a linear function
of vectors, in the sense that when it hits a vector (to its right) it yields a (complex)
number—the inner product. (When an operator hits a vector, it delivers another
vector; when a bra hits a vector, it delivers a number.) In a function space, the bra
can be thought of as an instruction to integrate:

<f|=ff*[~~]dx,

with the ellipsis [- - - ] waiting to be filled by whatever function the bra encounters in
the ket to its right. In a finite-dimensional vector space, with the vectors expressed
as columns,

ai
a
y=1 .1, [3.87]
ay
the corresponding bra is a row vector:
(| = (a a3 ... a}). [3.88]

The collection of all bras constitutes another vector space-——the so-called dual
space.

The license to treat bras as separate entities in their own right allows for
some powerful and pretty notation (though I shall not exploit it in this book). For
example, if |&) is a normalized vector, the operator

P =)o [3.89]
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picks out the portion of any other vector that “lies along” |&):

P|B) = (@|B)|e):

we call it the projection operator onto the one-dimensional subspace spanned by
|a). If {|e,)} is a discrete orthonormal basis,

(emlen) = Sun. [3.90]
then
> lendenl =1 [3.91]
n

(the identity operator). For if we let this operator act on any vector |«), we recover
the expansion of |&) in the {|e,)} basis:

> len)(enlar) = |a). 3.92]
n
Similarly, if {|e;)} is a Dirac orthonormalized continuous basis,
(e-le) =8(z — 2') [3.93]
then
f ec)ezldz = 1. (3.94]

Equations 3.91 and 3.94 are the tidiest ways to express completeness.

Problem 3.21 Show that projection operators are idempotent: P2 = P. Determine
the eigenvalues of P, and characterize its eigenvectors.

Problem 3.22 Consider a three-dimensional vector space spanned by an orthonor-
mal basis |1), |2), |3). Kets |«@) and |B8) are given by

o) = i|1) —2(2) —i]3), |B) =ill) +23).

(a) Construct (@] and (8| (in terms of the dual basis (1], (2], (3]).
(b) Find {«@|B) and (B|e), and confirm that (8|a) = («|B)*.

(c) Find all nine matrix elements of the operator A = |a)(B), in this basis, and
construct the matrix A. Is it hermitian?
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Problem 3.23 The Hamiltonian for a certain two-level system is
H = e (1){1] = 12){2] + 11){2] + 12)(1]).

where |1), |2) is an orthonormal basis and € is a number with the dimensions of
energy. Find its eigenvalues and eigenvectors (as linear combinations of |1) and
|2)). What is the matrix H representing H with respect to this basis?

Problem 3.24 Let O be an operator with a complete set of orthonormal eigenvec-
tors:

A

Oley) =gqulen) (n=1,2.3,...).

Show that O can be written in terms of its spectral decomposition:

Q = Z C]n|en)(€n|-
n

Hint: An operator is characterized by its action on all possible vectors, so what
you must show is that

Ola) =1 gulen)lenl { lar).

for any vector |a).

FURTHER PROBLEMS FOR CHAPTER 3

Problem 3.25 Legendre polynomials. Use the Gram-Schmidt procedure (Prob-
lem A.4) to orthonormalize the functions 1, x, x2, and x°, on the interval —1 <
x < 1. You may recognize the results—they are (apart from the normalization)0
Legendre polynomials (Table 4.1).

Problem 3.26 An anti-hermitian (or skew-hermitian) operator is equal to minus
its hermitian conjugate:

A

0" =-0. [3.95]
(a) Show that the expectation value of an anti-hermitian operator is imaginary.

(b) Show that the commutator of two hermitian operators is anti-hermitian. How
about the commutator of two anti-hermitian operators?

3()Legendrc didn’t know whalt the best convention would be: he picked the overall factor so that

all his functions would go to | at x = 1. and we're stuck with his unfortunate choice.
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Problem 3.27 Sequential measurements. An operator A, representing observ-
able A, has two normalized eigenstates | and yn, with eigenvalues a; and a-,
respectively. Operator B, representing observable B, has two normalized eigen-
states ¢ and ¢», with eigenvalues b; and b,. The eigenstates are related by

U = 3¢ +4¢2)/5. Y2 = (4¢1 — 3¢2)/5.

(a) Observable A is measured, and the value a; is obtained. What is the state of
the system (immediately) after this measurement?

(b) If B is now measured, what are the possible results, and what are their
probabilities?

(c) Right after the measurement of B, A is measured again. What is the proba-
bility of getting a;? (Note that the answer would be quite different if I had
told you the outcome of the B measurement.)

* *Problem 3.28 Find the momentum-space wave function @, (p.t) for the nth sta-
tionary state of the infinite square well. Graph |®,(p.#)|> and |®2(p.1)|?, as
functions of p (pay particular attention to the points p = *nxhi/a). Use ®,(p.t)
to calculate the expectation value of p2. Compare your answer to Problem 2.4.

Problem 3.29 Consider the wave function

1
WU(x,00 =1 V2nr

0. otherwise,

i2zx/A

e —HA < X < nA.

where n is some positive integer. This function is purely sinusoidal (with wavelength
A) on the interval —nd < x < nA, but it still carries a range of momenta, because
the oscillations do not continue out to infinity. Find the momentum space wave
function ®(p.0). Sketch the graphs of |¥(x, 0)|?> and |®(p, 0)|?, and determine
their widths, w, and w), (the distance between zeros on either side of the main
peak). Note what happens to each width as n — co. Using w, and w as estimates
of Ax and Ap, check that the uncertainty principle is satisfied. Warning: If you try
calculating o, you're in for a rude surprise. Can you diagnose the problem?

Problem 3.30 Suppose

X~

% (—00 < x < 00)

for constants A and «.
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(a) Determine A, by normalizing W (x, 0).
(b) Find (x), (x?), and oy (at time ¢t = 0).

(c) Find the momentum space wave function ®(p.0), and check that it is nor-
malized.

(d) Use ®(p,0) to calculate (p), (pz), and o, (at ime 1 = 0).

(e) Check the Heisenberg uncertainty principle for this state.

*Problem 3.31 Virial theorem. Use Equation 3.71 to show that

d dV
—(xp) =2(T) — <\——> [3.96]

dx

where T is the kinetic energy (H = T + V). In a stationary state the left side is

zero (why?) so
2(T) = <rﬂ> [3.97]

Cdx

This is called the virial theorem. Use it to prove that (T) = (V) for stationary
states of the harmonic oscillator, and check that this is consistent with the results
you got in Problems 2.11 and 2.12.

Problem 3.32 In an interesting version of the energy-time uncertainty principle®!
At = t/m, where t is the time it takes W(x.t) to evolve into a state orthogo-
nal to W(x.0). Test this out, using a wave function that is an equal admixture
of two (orthonormal) stationary states of some (arbitrary) potential: W (x,0) =

(L/VD)[Y1(x) + P2 (x)].

* *Problem 3.33 Find the matrix elements (n|x|n’) and (n|p|n’) in the (orthonormal)
basis of stationary states for the harmonic oscillator (Equation 2.67). You already
calculated the “diagonal” elements (n = n’) in Problem 2.12; use the same tech-
nique for the general case. Construct the corresponding (infinite) matrices, X and P.
Show that (1/2m)P? + (mw?/2)X* = H is diagonal, in this basis. Are its diagonal
elements what you would expect? Partial answer:

| h
(n|x|n") = o (‘./”—’an.n’—l + '\/H‘Sn’,n—l) . [3.98]

31Sce Lev Vaidman, Am. J. Phys. 60. 182 (1992) for a proof.
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Problem 3.34 A harmonic oscillator is in a state such that a measurement of the
energy would yield either (1/2)hw or (3/2)hw, with equal probability. What is the
largest possible value of (p) in such a state? If it assumes this maximal value at
time + = 0, what is W(x,1)?

* x xProblem 3.35 Coherent states of the harmonic oscillator. Among the stationary
states of the harmonic oscillator (|n) = i, (x), Equation 2.67) only n = 0 hits the
uncertainty limit (o0, = /i/2); in general, oxop = (2n-+ 1)/i/2, as you found
in Problem 2.12. But certain linear combinations (known as coherent states) also
minimize the uncertainty product. They are (as it turns out) eigenfunctions of the

lowering operator:3?

a_|a) = o|a)

(the eigenvalue o can be any complex number).

(a) Calculate (x), (x?), (p), (pz) in the state |«). Hint: Use the technique in

Example 2.5, and remember that a4 is the hermitian conjugate of a_. Do not
assume « is real.

(b) Find o, and op; show that oyo, = /2.

(c) Like any other wave function, a coherent state can be expanded in terms of
energy eigenstates:

o) = culn).

n=0
Show that the expansion coefficients are
an
vn!

(d) Determine cg by normalizing |@). Answer: exp(—|a|?/2).

Cn - CO

(e) Now put in the time dependence:
|n) — e Ent/f |y,
and show that | (¢)) remains an eigenstate of a_, but the eigenvalue evolves
in time:
iwt

a(t) =e '“a.

So a coherent state stays coherent, and continues to minimize the uncertainty
product.

2 . . . ..
32There are no normalizable eigenfunctions of the raising operator.
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(f) Is the ground state (Jn = 0)) itself a coherent state? If so, what is the eigen-
value?

Problem 3.36 Extended uncertainty principle.>®> The generalized uncertainty
principle (Equation 3.62) states that

1

0405 2 7(C)?,

where € = —i[A. 1§].

(a) Show that it can be strengthened to read
1
040 2 (O + (D)), [3.99]

where D = AB+BA —2(A)(B). Hint: Keep the Re(z) term in Equation 3.60.

(b) Check Equation 3.99 for the case B = A (the standard uncertainty principle
is trivial, in this case, since C = 0; unfortunately, the extended uncertainty
principle doesn’t help much either).

Problem 3.37 The Hamiltonian for a certain three-level system is represented by

the matrix
‘a 0 b
H=|0 ¢ 0},
b 0 a

where a, b, and ¢ are real numbers (assume a — ¢ # T b).

(a) If the system starts out in the state

0
180N =11},
_0
what is |4(1))?
(b) If the system starts out in the state
0
18(0) =10

what is |4(1))?

33For interesting commentary and references, see R. R. Puri, Phys. Rev. A 49, 2178 (1994).
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Problem 3.38 The Hamiltonian for a certain three-level system is represented by
the matrix

1 00
H=ho |0 2 0
0 0 2

Two other observables, A and B, are represented by the matrices

010 2 00
A=x|1 0 0], B=ul|0 0 1],
0 0 2 010

where w, A, and p are positive real numbers.

(a) Find the eigenvalues and (normalized) eigenvectors of H, A, and B.

(b) Suppose the system starts out in the generic state

c1
|8(0)) = | c2
c3

with |c1|® + |c2|? + |¢3]? = 1. Find the expectation values (at + = 0) of H,
A, and B.

(c) What is |4(t))? If you measured the energy of this state (at time t), what
values might you get, and what is the probability of each? Answer the same
questions for A and for B.

* xProblem 3.39
(a) For a function f(x) that can be expanded in a Taylor series, show that
£ x +xg) = e P0/M f(x)

(where xg is any constant distance). For this reason, p/# is called the genera-
tor of translations in space. Note. The exponential of an operator is defined

by the power series expansion: e€ =1+ Q0 + (1/2)0* + (1/3)0% +....
(b) If W(x, 1) satisfies the (time-dependent) Schrédinger equation, show that

W(x,t+1) = e“iﬁ"’/h\ll(.x', £)

(where r is any constant time); —H / is called the generator of translations
in time.
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(c) Show that the expectation value of a dynamical variable Q(x, p, t), at time
t + tg, can be written3*

(Q)rary = (W(x, DI MO, Bt + 1) O/ W (x, 1),

Use this to recover Equation 3.71. Hint: Let ty = dt, and expand to first
order in dr.

* xProblem 3.40

(a) Write down the time-dependent “Schriodinger equation” in momentum space,
for a free particle, and solve it. Answer: exp(—ip?t/2mh) ®(p. 0).

(b) Find ®(p.0) for the traveling gaussian wave packet (Problem 2.43), and
construct ®(p, £) for this case. Also construct |d(p. 1)|%, and note that it is
independent of time.

(c) Calculate (p) and (p?) by evaluating the appropriate integrals involving ®,
and compare your answers to Problem 2.43.

(d) Show that (H) = (p)?/2m + (H)o (where the subscript 0 denotes the sta-
tionary gaussian), and comment on this result.

3n particular. if we set + = (). and drop the subscript on 1.
(@) = (W (x. DO (x. 1)) = (¥(x. )T~ QU 1w (x. 0)).

where U = exp(—i H1/h). This says that you can calculate expectation values of Q either by sand-
wiching Q between W (v, 7)* and W(x.1), as we have always done (letting the wave functions carry
the time dependence), or else by sandwiching U~1'QU between W(r.0)* and W(x.0). letting the
operator carry the time dependence. The former is called the Schridinger picture, and the latter the
Heisenberg picture.



CHAPTER 4

QUANTUM MECHANICS IN
THREE DIMENSIONS

4.1 SCHRODINGER EQUATION IN SPHERICAL COORDINATES

The generalization to three dimensions is straightforward. Schrodinger’s equation
says
o

ih— = HY; [4.1]
ot

the Hamiltonian operator! H is obtained from the classical energy

L I 2, 2,
Emv +V =;”(p_\. +pit+p+V

by the standard prescription (applied now to ¥ and z, as well as x):

h hoa ha
P> Zo=i Py Tao Pr oo

. 4.2
I dx i oy [4-2]

'Where confusion might otherwise occur I have been putting “hats™ on operators. to distinguish
them from the corresponding classical observables. I don’t think there will be much occasion for
ambiguity in this chapter. and the hats get (o be cumbersome. so I am going to leave them off from
now on.
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or
r
p— V. [4.3]
i
for short. Thus
v .,
h— = —— V¥ 4+ V, 4.4
g ot 2m + [44]
where i 02 ,
9 - 0-
2 _
v s+ =+ [4.5]

is the Laplacian, in cartesian coordinates.

The potential energy V and the wave function W are now functions of r =
(x.v.2) and t. The probability of finding the particle in the infinitesimal volume
d’r =dxdvdz is |Y(r. r)|2 d?r, and the normalization condition reads

f|\p|3d3r= 1, [4.6]

with the integral taken over all space. If the potential is independent of time, there
will be a complete set of stationary states,

W, (r,t) = w”(r)e—ili',,l/h‘ [4.7]

where the spatial wave function , satisfies the time-independent Schrédinger
equation:

2
—ﬁ—vzw +Vy =Ey. [4.8]
2m

The general solution to the (time-dependent) Schrodinger equation is

W(r, 1) = Z cun(mye T EN R [4.9]

with the constants ¢, determined by the initial wave function, W(r, 0), in the
usual way. (If the potential admits continuum states, then the sum in Equation 4.9
becomes an integral.)
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*Problem 4.1

(a) Work out all of the canonical commutation relations for components of the
operators r and p: [x, y], [x. py]. [x. px]. [py. p:], and so on. Answer:

ri, pjl = —lpi.rjl1=1ihé&;;, [ri.r;1=1p:i.p;]1=0, [(4.10]
where the indices stand for x, y, or z, and vy = x, ry =y, and r. = z.

(b) Confirm Ehrenfest’s theorem for 3-dimensions:

d 1 d
Z<r)=;<p). and Z(p)=<—-VV)- [4.11]

(Each of these, of course, stands for three equations—one for each compo-
nent.) Hint: First check that Equation 3.71 is valid in three dimensions.

(c) Formulate Heisenberg's uncertainty principle in three dimensions. Answer:
ovop, = h/2, oyop, = h/2. 0.0, =h/2, [4.12]

but there is no restriction on, say, 0,0,.

4.1.1 Separation of Variables

Typically, the potential is a function only of the distance from the origin. In that
case it is natural to adopt spherical coordinates, (r. 6, ¢) (see Figure 4.1). In
spherical coordinates the Laplacian takes the form>

1 a/,0 19 9 1 82
2_ 18 (23 3 (nel . 413
r2 or (’ 81‘) T r2sin@ 86 (sm 89) * r2sin” @ (3452) @131

In spherical coordinates, then, the time-independent Schrédinger equation reads

R2T138 (,0y 1 3 Ay 1 32y
|2 — {sing==
2m [,-2 ar (' ar ) T Zsin6 96 (S'" ae) T sinte (aqﬂ)]

+Vy=Ey. [414]

We begin by looking for solutions that are separable into products:

Y(r,0.¢9) = R(rY (6. ¢). [4.15]

2In principle, this can bc obtained by change of variables from the cartesian expression
(Equation 4.5). However. there-are much more cfficient ways of getting it: see. for instance, M. Boas,
Mathematical Methods in the Physical Sciences. 2nd ed.. (Wiley. New York. 1983). Chapter 10.
Scction 9.
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ZA

FIGURE 4.1: Spherical coordinates: radius , polar angle #, and azimuthal angle ¢.

Putting this into Equation 4.14, we have

Iy d 7c[R>+ R b . an N R 3%
2m | r2 dr dr r2sinf 96 06 r2sin? 6 9¢2

+VRY = ERY.

Dividing by RY and multiplying by —2mr2/h?:

1 d ~dR 2mr2[V() E]
——|r—) - r) —
Rdr dr h?

LR ginga)')+ 1 3%y _o
Y |sin0ag \' 96 sin29 a2 |

The term in the first curly bracket depends only on », whereas the remainder
depends only on 6 and ¢; accordingly, each must be a constant. For reasons that
will appear in due course,? I will write this “separation constant” in the form /(/41):

1d [ ,dR 2mr?

(22 - Vi) —E]l=10+1); 4.16

R dr (’ d{‘) K2 V) ] +D [ .
1 1 9 oY 1 9%y
2l 2 T gnel Ve — 2 U e, 4.17
Y{sin9'89 (Sm 89>+si1129 8¢2} ¢+ A

3Note that there is no loss of generality here—at this stage / could be any complex number.
Later on we’ll discover that / must in fact be an imeger. and it is in anticipation of that result that I
express the separation constant in a way that looks peculiar now.
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*xProblem 4.2 Use separation of variables in cartesian coordinates to solve the
infinite cubical well (or “particle in a box™):

0, if x. v,z are all between 0 and a:
00, otherwise.

Vix.v.2) = {

(a) Find the stationary states, and the corresponding energies.

(b) Call the distinct energies Ey. E2. E3, ..., in order of increasing energy.
Find E|. Es, E3, E4. Es, and Eg. Determine their degeneracies (that is, the
number of different states that share the same energy). Comunent: In one
dimension degenerate bound states do not occur (see Problem 2.45), but in
three dimensions they are very common.

(c) What is the degeneracy of E|4, and why is this case interesting?

4.1.2 The Angular Equation

Equation 4.17 determines the dependence of ¥ on 8 and ¢; multiplying by Y sin® 6,
it becomes:

dY 3%y
sinf — (sin@—) + 307 = —I(l + 1) sin® Y. [4.18]

You might recognize this equation—it occurs in the solution to Laplace’s equation
in classical electrodynamics. As always, we try separation of variables:

Y0, d) =0(0)P(¢). [4.19]

Plugging this in, and dividing by ®®, we find:

1[. . d (. , d® : 1 d*®
{6 [smed—e (sm9 10 ):l + 1+ 1)511129} 3 e =0.
The first term is a function only of 8, and the second is a function only of ¢, so
each must be a constant. This time* I’ll call the separation constant m?>;

1. .d (., d® s

o l:smeﬁ (smeﬁ):l +1(l 4+ 1)sin“ 0 = m*: [4.20]
1 d?®
5214)2 = —m?2, [4.21]

"Again. there is no loss of generality here, since at this stage 11 could be any complex number:
in a moment though, we will discover hat »m must in [act be an ineger. Beware: The letter-ur is
now doing double duty, as mass and as a scparation constant. There is no graceful way o avoid this
confusion, since both uses are standard. Some -authors now switch to M or ¢ for mass, but I hate to
change notation in mid-stream, and I don’t think confusion will avise. as long as you are aware of the
problem.
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The ¢ equation is easy:

d*o

a¢? —m*® = o(p) =" [4.22]

[Actually, there are nvo solutions: exp(im¢) and exp(—ime), but we’ll cover the
latter by allowing m to run negative. There could also be a constant factor in
front, but we might as well absorb that into ©. Incidentally, in electrodynamics we
would write the azimuthal function (&) in terms of sines and cosines, instead of
exponentials, because electric potentials must be real. In quantum mechanics there
is no such constraint, and the exponentials are a lot easier to work with.] Now,
when ¢ advances by 27, we return to the same point in space (see Figure 4.1), so
it is natural to require that®

(¢ + 27) = D(). [4.23]

In other words, exp[im(¢ + 27)] = exp(itn¢), or exp(2mwim) = 1. From this it
follows that »7 must be an integer:

m=0,%1, +2,.... [4.24]

The 6 equation,

sin @ i (sin ) a0

2 2
sin“ 0 —m~]© =0, 4.25
70 'd9_>+[1([+ sin“ 0 —m°]®@ =0 [4.25]

is not so simple. The solution is
®(0) = AP/"(cosB), [4.26]

where P/" is the associated Legendre function, defined by®

0 5 d ol
Pl'(x)y=(1- x)lmis2 (T) Pi(x). [4.27]
dx
and Pj(x) is the /th Legendre polynomial, defined by the Rodrigues formula:
Py = — (2 /(\-2 1/ [4.28]
M=o \ax ) ¢ ' ‘

>This is more slippery than it looks. After all. the prabability density (P is single-valued
regardless of m. In Section 4.3 we’ll obtain the condition on ur by an entirely different—and more
compelling—argument.

SNotice that P,_'" = P,"’. Some authors adopt a different sign convention for negative values
of mi: see Boas (footnote 2). p. 505.
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TABLE 4.1: The first few Legendre polynomials, P;(x): (a) functional form,
(b) graphs.
A

Py =x
Py=303x"-1)

"
I
% |—
_—
o]
ol
-~
w
|
~J
9
|
+
&
Z

(a) (b)

For example,
1d ,
=1L PXx)=z—x"—-1=x,
Po(x) 1 (x) 5T & ) =X

. 1 (d\ 52 2 1.,
PZ(\)_4‘-_2_((1_)(> (.\ —‘1) —5(3){ —-1)

and so on. The first few Legendre polynomials are listed in Table 4.1. As the name
suggests, P;(x) is a polynomial (of degree /) in x, and is even or odd according to
the parity of /. But P/"(x) is not, in general, a polynomial—if m is odd it carries

a factor of V1 — x2;

1 I T1
POy =-Bx2=1). Pl =U—x)'"2L 262 = 1)| =3¢V1 — «2.
- 2 < dx |2

2 NEAY I )
Py(x) = (1 —x7) ( ) I:EGX— — ])] = 3(1 — x°),

dx

etc. (On the other hand, what we need is P;" (cos6), and V1 — cos? 6 = sin#, so
P/"(cos @) is always a polynomial in cos@, multiplied—if m is odd—by sin6.
Some associated Legendre functions of cosé are listed in Table 4.2.)

Notice that / must be a nonnegative integer, for the Rodrigues formula to
make any sense; moreover, if |[m| > [, then Equation 4.27 says P;" = 0. For any
given [, then, there are (2/ + 1) possible values of m:

I=0,1.2,...; m=—l.—=l+1.....-1.0.1, .... =11 [4.29]

But wait! Equation 4.25 is a second-order differential equation: It should have rwo
linearly independent solutions, for any old values of / and m. Where are all the
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TABLE 4.2: Some associated Legendre functions, P/ (cos8): {a) functional form,

(b) graphs of r = P/" (cos 6) (in these plots r tells you the magnitude of the function in
the direction @; each figure should be rotated about the z-axis).

PO=1 PV= L3 cos? 61 \
0 27 3 ) ) PLe)
Pl=sin# P3 =15 sin 6(1 — cos’ 6) ] _
P{=cos 6 P3=15sin’6 cos ¥ PY(®) Pi#)
P2=3sin’6 Pl=1sin6(5cos?o-1) i
Pl=1sin6 cosf PY= L (5cos*6—3cosf) ) Pi(e)
(a) (b)

other solutions? Answer: They evist. of course, as mathematical solutions to the

equation, but they are physically unacceptable, because they blow up at § = 0
and/or 6 = 7 (see Problem 4.4).

Now, the volume element in spherical coordinates’ is

d*r = r*sin0drdf dg.

[4.30]
so the normalization condition (Equation 4.6) becomes
f|w|31'23i118c11'd9 d¢=f|R|2r3 <1rf|Y|3sinec19 do = 1.
It is convenient to normalize R and Y separately:
o . i Y 4 ’
f [R|*r=dr =1 and f f |Y|-sin@d6dp = 1. [4.31]
0 0 Jo

7Sce. Tor instance, Boas (footnote 2). Chapter 5. Section 4.
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TABLE 4.3: The first few spherical harmonics, Y. ¢).

Y(? _ (ﬁ )l/z. Yzﬂ _ (ﬁ)l/z sin? Qe £2i0

Ylo—(%)l  cos 8 Y{’z(lgﬂ)m (5 cos*8— 3 cos 6)

v =% (2 )" sin g2 v =% (55)" sin6 5 cos?o— e
Y9= (%) 2 (3cos?@—1) Y= (% "2 sin” @ cos Qe T2

v =% (g2) Psinbcosteo v = (52)" sind gesio

8

The normalized angular wave functions® are called spherical harmonics:

— |
Y (6, ¢) = e\/(214—; D g T Il:::;' e'Me P/" (cos B). [4.32]

where € = (—1)"" for m > 0 and € = 1 for m < 0. As we shall prove later on,
they are automatically orthogonal, so

[ [[ure.orwy' e orsnodods = oo, @33
0 0

In Table 4.3 I have listed the first few spherical harmonics. For historical reasons, /
is called the azimuthal quantum number, and  the magnetic quantum number.

*Problem 4.3 Use Equations 4.27, 4.28, and 4.32, to construct Yé) and Yzl. Check
that they are normalized and orthogonal.

Problem 4.4 Show that
®(0) = Aln[tan(6/2)]

8The normalization factor is derived in Problem 4.54: ¢ (which is always 1 or —1) is chosen
for consistency with the notation we will be using in the theory of angular momentum: it is reasonably
standard. though some older books use other conventions. Notice that

YI—I” — (_!)"7 (Yll”)* .
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satisfies the 6 equation (Equation 4.25), for / = m = 0. This is the unacceptable
“second solution”—what’s wrong with it?

*xProblem 4.5 Use Equation 4.32 to construct Y,’ @, ¢) and Y32(9. ¢). (You can take
P32 from Table 4.2, but you'll have to work out P,’ from Equations 4.27 and 4.28.)
Check that they satisfy the angular equation (Equation 4.18), for the appropriate
values of / and m.

* xProblem 4.6 Starting from the Rodrigues formula, derive the orthonormality con-
dition for Legendre polynomials:

! 2
v/‘_l P[ (.\)PI'(.\') dx = (E]TI) 811‘. [434]

Hint: Use integration by parts.

4.1.3 The Radial Equation

Notice that the angular part of the wave function, Y (6. ¢), is the same for all spher-
ically symmetric potentials; the actual shape of the potential, V (r), affects only
the radial part of the wave function, R(r), which is determined by Equation 4.16:

d ~dR 2mrt
.2 Vir — 1 . L3
—r (1 P ) % [V(ir)—E]JR=I1({+ 1R [4.35]

This equation simplifies if we change variables: Let

u(r) =rR(r), [4.36]
so that R = u/r, dR/dr = [r(du/dr) — ul/r*, (d/dr)[r2(dR/dr)] = rd*u/dr?,
and hence

h* du B2 Id+1)
_.2)—71‘67)3 + [V + '2—”; )‘2 u=Fu. [437]

This is called the radial equation;’ it is identical in form to the one-dimensional
Schrédinger equation (Equation 2.5), except that the effective potential,

ﬁ1(1+1)

Veir=V
eff + 2m r?

. [4.38]

9 . o N . .
Those m’s are masses, of coursc—the separation constant m does not appear in the radial
equation.
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contains an extra piece, the so-called centrifugal term, (i/2m)[I(l + 1)/r2]. It
tends to throw the particle outward (away from the origin), just like the centrifu-
gal (pseudo-)force in classical mechanics. Meanwhile, the normalization condition
(Equation 4.31) becomes

le @}
f [u)dr =1. [4.39]
0

That’s as far as we can go until a specific potential V (r) is provided.

Example 4.1 Consider the infinite spherical well,

0, if »r <a:
V) = Hr=d [4.40]
oo, ifr > a.

Find the wave functions and the allowed energies.

Solution: Outside the well, the wave function is zero; inside the well, the radial
equation says

2 I +1 ,
du =[ s )—k‘-] . [4.41]
dr- Fe
where
2mE
k=Y [4.42]
fi

as usual. Our problem is to solve this equation, subject to the boundary condition
u(a) = 0. The case I = 0 is easy:

121 3 .
(d—l—: = —k“u = u(r) = Asinlkr) 4+ Bcos(kr).
re

But remember, the actual radial wave function is R(rr) = u(r)/r, and [cos(kr)]/r
blows up as » — 0. So'® we must choose B = 0. The boundary condition then
requires sin(ka) = 0, and hence ka = nm, for some integer n. The allowed energies
are evidently

n2mih?
En = n=1.2.3,...), [4.43]

2ma?

10 Actually. all we requirc is that the wave function be normalizable. not that it be finite: R(r) ~
1/r at the origin is normalizable (becausc of the 2 in Equation 4.31). For a more compelling proof
that B = 0. see R. Shankar. Principles of Quantum Mechanics (Plenum. New York. 1980). p. 351.
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the same as for the one-dimensional infinite square well (Equation 2.27). Normal-
izing u(r) yields A = /2/a; tacking on the angular part (trivial, in this instance,
since Y (6. ¢) = 1/+/4m), we conclude that

1 sin(nmr/a) [4.44]

Yoo =

2ma r

[Notice that the stationary states are labeled by three quantum numbers, n, /, and
m: Yum(r, 8, ¢). The energy, however, depends only on » and I: E,;.]
The general solution to Equation 4.41 (for an arbitrary integer /) is not so
familiar;
u(r) = Arji(tkr) + Brnj(kr). [4.45]

where j;(x) is the spherical Bessel function of order /, and »n;j(x) is the spherical
Neumann function of order /. They are defined as follows:

I . ! N
J1) = (=) (11) T ) = —(=x) (li) S [4.46]
xdx X X

xdx

For example,

) sin x COS X
Jo(x) = 4 no(x) = — :

) 1 d [sinx sinxy  cosx
Jl(x):(—-\')——(—“>= 5= — :

xdx X X X
7. .
(1) = (—x)? 1 d \” sinx 51 d\ xcosx —sinx
) =(Cx)y|-——) —=x"——
xdx X xdx x3

. 9 .
3sinx —3xcosx — x~sinx

x3

and so on. The first few spherical Bessel and Neumann functions are listed in

Table 4.4. For small x (where sinx = x — x3/3! + x°/5! — ... and cosx =
1 —x2/2 4 x4/41 — ..,
O R m R —= WAL e
x) =1 X)x ——. X) R - X) xR —
Jo » holx ,\’ J1 3 J2 15

etc. Notice that Bessel functions are finite at the origin, but Neumann functions
blow up at the origin. Accordingly, we must have B; = 0, and hence

R(r) = Aji(kr). [4.47]
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TABLE 4.4: The first few spherical Bessel and Neumann functions,
Jn(x) and n;(x); asymptotic forms for small x.

. _sinx oGO8 X
Io=—% 0=""%
. _sinx _cosx o= 0S¥ sin x
=2 X =72 X
j—(3 ]')sinx 3cos"r Ny = (3 l)cosr 3sinx
2—=\V\"= = o b L Y b 2 -\ - Y AT T F B
R x> X x>
. 2 ! o 3
’l_) .—I-xI‘ nl_) _Q.I_). ._.l_., for x << 1.
A7 @I+ )Y 2l xl

There remains the boundary condition, R(a) = 0. Evidently k must be chosen
such that

Jitka) = 0; [4.48]

that is, (ka) is a zero of the /th-order spherical Bessel function. Now, the Bessel
functions are oscillatory (see Figure 4.2); each one has an infinite number of zeros.

FIGURE 4.2: Graphs of the first four spherical Bessel functions.
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But (unfortunately for us) they are not located at nice sensible points (such as n.
or nm, or something): they have to be computed numerically.!! At any rate, the
boundary condition requires that

]
k= ~Bu. [4.49]
a

where B, is the nth zero of the /th spherical Bessel function. The allowed energies,
then, are given by

o,
E, = Imal B+ [4.50]
and the wave functions are
Yl (r. 0. @) = Anljl(ﬁnl"/“)yfn(9- ?). [4.51]

with the constant A,; to be determined by normalization. Each energy level is
(21 + 1)-fold degenerate, since there are (2/ 4+ 1) different values of m for each
value of / (see Equation 4.29).

Problem 4.7

(a) From the definition (Equation 4.46), construct s (x) and n2(x).

(b) Expand the sines and cosines to obtain approximate formulas for n|(x) and
na(x), valid when v « 1. Confirmn that they blow up at the origin.

Problem 4.8

(a) Check that Arj)(kr) satisfies the radial equation with V(r) =0 and / = 1.

(b) Determine graphically the allowed energies for the infinite spherical well,
when / = 1. Show that for large n, E,| = (hznz/znmz)(n + 1/2)3. Hint:
First show that j;(x) =0 = x =tan.. Plot x and tan.x on the same graph,
and locate the points of intersection.

' Abramowitz and Stegun. eds.. Handbook of Mathematical Funcrions, (Dover. New York. 1965).
Chapter 10. provides an extensive listing.



Section 4.2: The Hydrogen Atomn 145

* xProblem 4.9 A particle of mass m is placed in a finite spherical well:

._V . 1 :
V(r) = ° ffr =
0. if r > a.

Find the ground state, by solving the radial equation with / = 0. Show that there
is no bound state if Voa? < m2h? /8m.

4.2 THE HYDROGEN ATOM

The hydrogen atom consists of a heavy, essentially motionless proton (we may as
well put it at the origin), of charge e, together with a much lighter electron (charge
—e) that orbits around it, bound by the mutual attraction of opposite charges (see
Figure 4.3). From Coulomb’s law, the potential energy (in SI units) is

e | [4.52]
ey r '

Vir)=—

and the radial equation (Equation 4.37) says

h2 d*u et 1 R I+ 1)
_ s _ 4 = Eu. 4.53
2m dr? + I: dmeq r T 2m  r2 " . [4.53]

Our problem is to solve this equation for u(r), and determine the allowed energies,
E. The hydrogen atom is such an impertant case that I’'m not going to hand you the
solutions this time—we’ll work them out in detail, by the method we used in the
analytical solution to the harmonic oscillator. (If any step in this process is unclear,
you may wish to refer back to Section 2.3.2 for a more complete explanation.)

-e
(electron)

+e
(proton)

FIGURE 4.3: The hydrogen atom.
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Incidentally, the Coulomb potential (Equation 4.52) admits continuum states (with
E > 0), describing electron-proton scattering, as well as discrete bound states,
representing the hydrogen atom, but we shall confine our attention to the latter.

4.2.1 The Radial Wave Function

Our first task is to tidy up the notation. Let

v—2mE
o= Y2 [4.54]
h

(For bound states, E is negative, so « is real.) Dividing Equation 4.53 by E, we
have 5 )

I d“u me* 1 [(l+1)

———=|1- . + — | u.

k2 dr? 2wegh=k (kr) (kr)=

This suggests that we introduce

2
p=kr. and pp= —— [4.55]
2meph~k
so that ,
2 10+ 1
54:1—@+12J% [4.56]
dp* P p-

Next we examine the asymptotic form of the solutions. As p — oo, the
constant term in the brackets dominates, so (approximately)

du
— =u.
dp?

The general solution is
u(p) = Ae " + Be”. [4.57]

but ¢” blows up (as p — 00), so B = 0. Evidently,
u(p) ~ Ae ”, [4.58]

for large p. On the other hand, as p — 0 the centrifugal term dominates;'? approx-
imately, then:

d?u a4+ 1
el = 2 l"

2 This argument does not apply when / = 0 (although the conclusion. Equation 4.59, is in fact
valid for that case too). But never mind: All 1 am trying to do is provide some morivarion for a change
of variables (Equation 4.60).
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The general solution (check it!) is
u(p) = Cp'*' + Dp~'.
but ,o" blows up (as p — 0), so D = 0. Thus
u(p) ~ Co'+l, [4.59]

for small p.
The next step is to peel off the asymptotic behavior, introducing the new
function v(p):
u(p) = p' e Pu(p), [4.60]

in the hope that v(p) will turn out to be simpler than u(p). The first indications
are not auspicious:

du I —p dv
—=pe’|(+]1-pPv+p—
dp dp

d*u _ I+ 1 dv  d*v
—;zp’e” =2l -24p+ ( ) v+2(0+1—-p)—+p—
P dp = dp*

In terms of v(p), then, the radial equation (Equation 4.56) reads

2

d
MY 4 oo — 20 + Div = 0. [4.61]
dp

Finally, we assume the solution, v(p), can be expressed as a power series
in p:

v(p) = Z CJ',O"‘. [4.62]
j=0

Our problem is to determine the coefficients (cq. c. ¢2. .. .). Differentiating term
by term:

dv ad Y
—=§ JCip E (1+1)c,+1p
i= j=0

[In the second summation I have renamed the “dummy index™: j — j + 1. If this
troubles you, write out the first few terms explicitly, and check it. You may object
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that the sum should now begin at j = —1, but the factor (j 4+ 1) kills that term
anyway, so we might as well start at zero.] Differentiating again,

d%v o :
L Y G+ Deparri
Y =0

Inserting these into Equation 4.61, we have

o oC
> J G+ Dejrrp? +20+ 1) Y G+ Dejrrp?
=0 s

0 oC
=2 jejp! +lpo =20+ D] Y ejp’ =0.
j=0 j=0

Equating the coefficients of like powers yields
U+ Dejpr +20+ DG + Dejar = 2j¢j + [po — 20 + Dlej =0.

or. .
2 +14+ 1) — po

RA {(j TG +2+2) ]V 14.63]

This recursion formula determines the coefficients, and hence the function v(p):
We start with ¢ (this becomes an overall constant, to be fixed eventually by
normalization), and Equation 4.63 gives us ¢; putting this back in, we obtain ¢,
and so on.!?

Now let's see what the coefficients look like for large j (this corresponds to
large p, where the higher powers dominate). In this regime the recursion formula
says'

O O S
GHESGIDY T T

You might wonder why 1 didn't use the series method directly on 1(p)—why factor out the
asymptotic behavior before applying this procedure? Well, the reason for peeling off p/*! is largely
aesthetic: Without this. the sequence would begin with a long string of zeros (the first nonzero coefficient
being ¢741): by factoring out o/ *! we obtain a serics that starts out with pY. The ¢~ factor is more
critical —if you don't pull that out, you get a three-term recursion formula. involving ¢;42, ¢ ;4. and
cj(try it!) and that is enormously more difficult to work with.

4You might ask why 1 don't drop the | in j + 1—alfter all, I am ignoring 2(/ + 1) — py in the
numerator. and 2/ + 2 in the denominator. In this approximation it would be fine to drop the 1 as well.
but kecping it makes the argument a little cleaner. Try doing it without the 1. and you'll see what 1
mean.
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Suppose for a moment that this were exact. Then

2.4
Ci = -T-Co. [4.64]
SO o
2J
v(p) =co Z —p! = cpe”
=
and hence
u(p) = cop'tte”, [4.65]

which blows up at large p. The positive exponential is precisely the asymptotic
behavior we didn’t want, in Equation 4.57. (It's no accident that it reappears here;
after all, it does represent the asymptotic form of some solutions to the radial
equation—they just don’t happen to be the ones we’re interested in, because they
aren’t normalizable.) There is only one way out of this dilemma: The series must
terminate. There must occur some maximal integer, jmax, such that

Climan+1) = 0. [466]
(and beyond which all coefficients vanish automatically). Evidently (Equation 4.63)
2(.[max +1+1) - Py = 0.

Defining
n= jmax +14+1 [4.67]

(the so-called principal quantum number), we have
po = 2n. [4.68]
But pg determines E (Equations 4.54 and 4.55):

2 2 /

h<k~ me*

E = — —
2m

_— 4.69
8w 2e2h’pd [+.69]

so the allowed energies are

2\*11  E

m e’ {
E,=—|— — = —, =1,2.3,... 4.70
" |:2h2 (47T60) ] n?  n? " ' [4.70]
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This. is the famous Bohr formula-~—by any measure the most important result in.
all of quantum mechanics. Bohr obtained it in 1913 by a serendipitous mixture
of inapplicable classical physics and premature quantum theory (the Schrédinger

equation did not come until 1924).

Combining Equations 4.55 and 4.68, we find that

me* \ 1 1 -
K= )=, [4.71]
dmeph®) n an
where
4 egh? .
a= 00 —0529%x1070m [4.72]
me

is the- so-called Bohr radius.’> It follows (again, from Equation 4.55) that

an

The spatial wave functions for hydrogen are labeled by three quantum numbers (7,
[, and m): _
-wn.lm #,0,¢) = Ru(r) Y[n.w’ ?), [4.74]

where (referring back to Equations 4.36 and 4.60)
o1, |
Ru(r) = =p' e u(p), [4.75]
) =7 |

and v(p) is a polynomial of dégree jmax =#n —[ — 1 in p, whose c_oﬁefﬁcien.ts are
determined (up to an overall normalization factor) by the recursion formula

2 +14+1=n)

- [4.7€
GG+ [4.76]

Cj+1 =

The ground state (that is, the state of lowest energy) is the case n = 1; putting
in the accepted values for the physical constants, we get:

L, 2
B =—| 2 (2 ) — _13.6 eV. [4.77]
25k \4meg

51t is traditional to write. the Bohr .rajd_iu§ with a subscript: ag. But this is cumbersome and
untiecessary, so.1 prefeér to leave the subsctipt. off.
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Evidently the binding energy of hydrogen (the amount of energy you would have
to impart to the electron in the ground state in order toionize the atom) is 13.6 V.
Equation 4.67 forces / = 0, whence also m = 0 (see Equation 4.29), so

Yioo(r, @, ) = Rip(r)Y (6, ). [4.78]

The recursion formula truncates after the first term (Equation 4.76 with j = 0
yields ¢; = 0), so v(p) is a coristant (cg), and

Rio(r) = Ze . [4.79]
Normalizing it, in accordance with Equation 4.31:

o0 2 poo .
o e ; »
/ R[22 dr = ,‘ / e ¥ dr = e~ =1,
40O as Jo 4

so co = 2/+/a. Meanwhile, ¥§ = 1/+/4, and hence the ground state of hydrogen
is

1
Vioo(r, 0, @) = ‘/7—__3;‘3’_"/ ‘. [4.80]

If n = 2 the energy is

—13.6 eV

E) =
2 7

= —3.4¢V: [4.81]
this is the first excited state—or rather, states, since we can have either ] = 0 (in
which case m = 0) or [ = 1 (with m = —1, 0, or +1); evidently four different
states share this same energy. If [ = 0, the recursion relation (Equation 4.76) gives

c1 = —cp (using j =0), and ¢z =0 (using j = 1),

so v(p) = ¢y(1 — p), and therefore

! F\ i
Ryp(r) = 2 (1 —-%) e/, [4.82]

[Notice that the expansion coefficients {c;} are completely different for different
quantum nombers # and [.] If / = 1 the recursion formula terminates the series
after a single term; v(p) is a constant, and we find
o
2 el [4.83]

Ry (r) =

(In each case the constant ¢y is to be determined by normalization—see Prob-
lem 4.11.)
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For arbitrary n, the possible values of / (consistent with Equation 4.67) are

1=0,12,...,—1, [4.84]

and for each [ there are (2] + 1) possible values of m (Equation 4.29), so the total

degeneracy of the energy level E; is

n—1
dny =Y @ +1=n~ [4.85]
1=0

The polynomial v(o) (defined by the recursion formula, Equation 4.76) is a function
well known to applied mathematicians; apart from normalization, it can be written
as :

v(p) = L% (20, [4.86]

where

P o dN
L, _,(x)= (—=1)? I Ly(x) [4.87]

is an associated Laguerre polynomial, and

| (dN\Y, .
() — X X4

is the gth Laguerre polynomial,!® (The first few Laguerre polynomials are listed
in Table 4.5; some associated Laguerre polynomials are given in Table 4.6. The
first few radial wave functions are listed in Table 4.7, and. plotted in Figure 4.4.)
The normalized hydrogen wave functions are!’

2N =D (N T o Temen -
Yulm = (;ZZ—) Wc’ (E) [Ln—l—l (2r/na)] "0, ¢). [4.89]

They are not pretty, but don’t complain—this is one of the very few realistic
systems that can be solved at all, in exact closed form. Notice that whereas the
wave functions depend on all three quantum numbers, the energies (Equation 4.70)
are determined by n alone. This is a peculiarity of the Coulomb potential; in the

165 usual, there. are rival hormalization cénventions in the literature; 1 have adopled the mest
neatly standard one.

71t you ‘want to sce how the normalization factor is calculated, study (for example) L. Schiff,
Quantum Mechanics, 2nd ed., (McGraw-Hill, New York, 1968), page 93.
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TABLE 4.5: The first few Laguerre polynomials, Lg(x).

Ly=1
Ly=—x+1

Ly=x*—4x+2

Ly=—x*+9x>—18x+ 6

Ly =x* — 16x3 + 7242 — 96x +24

Ls =% + 25x% — 200x3 + 600x2 — 600x + 120

Lg=x5 — 3615 +450x* — 2400x3 + 540052 — 4320x + 720

TABLE 4.6: Some associated Laguerre
polynomials, L7, (x).

L=1 L2=:

Ly=—x+1 L?= —6x+18
LY=x?—4x+2 L}=12x*—96x + 144
Li=1 L§=6

Li=-2x+4 L}= -24x+96
L}=3y-18x+18 L3 = 60x> — 600x + 1200

case of the spherical well, you may recall, the energies depend also on I (Equa-
tion 4.50). The wave functions are mutually orthogonal:

/ lﬁ:zm '.wﬂ’["m’ 7‘2 blﬂ@ dr do d¢ = Spu! 01 Sy - [4.90]

This follows from the orthogonality of the spherical harmonics (Equation 4.33)
and (for n. # n’) from the fact that they are eigenfunctions of H with distinct
eigenvalues,

Visualizing the hydroger wave functions is not easy. Chemists like to draw “den-
sity plots,” in which the brightness of the cloud is proportional to [y[* (Figure 4.5).
More guantitative (but perhaps harder to read) are surfaces of constant probability
density (Figure 4.6).

«Problem 4.10 Work out the radial wave functions Rsp, Rai, and Ry, using the
recursion formula (Equation 4.76). Don’t bother to normialize them.
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TABLE 4,7: The first few radial wave funétions for hydrogen,
Ry (r).

R 10 =2a732 exp(—ria)

| B2 :«/_;—Za 32 L exp (—r/2a)
=2 e 2r _2__(_.')-2) o
.R.BO @ a (1 3 5_1 +_2_7 ) ) BXp( ,/30)
—_ & 30 _li)('L) 3
Ry 27\/6‘1 (1 67 \a exp (—r/3a)
=_4 432 ( r )2 exp (_rf3a)
* 7 81V30 \a

g —:312( _3r l(L)-Q_L(r)“) _
Ryg Za _:1 "I + s\ 192\ exp. (—+/4a)
Ry = "—\[53 a2 (1 A £+L(L)2 ﬁ éxp (—rida)
Ryy=—1_ a2 ( -1 —'—) (1)26'}@ (—r/4a)
A2 645 - 12 a)\a e

Ryy= -—l—a;372(r exp (—/da)
7 768V35 P

()

*Problem 4.11
(a) Normalize Ryg (Equation 4.82), and construct the function ¥qq.

(b) Normalize Ry; (Equation 4.83), and construct ¥211, V210, and ¥j—1.

*Problem 4.12
(a) Using Equation 4.88, work out the first four Laguerre polynomials:
(b) Using Equations 4.86, 4.87, and 4.88, find v(p), for the case n =5, [ = 2.

{c) Find v(p) again (for the case n = 5, [ = 2), but this time get it from the
recursion formula (Equation 4.76).
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Rn!("r )

FIGURE 4.4: Graphs of the first few hydrogen radial wave functions, R, (7).

«Problem 4.13

(a) Find {r) and (r?) for an electron in the: ground state of hydrogen, Express
your answers in terms of the Bohr radius.

(b) Find (x) and (x?) for an electron in the ground state of hydrogen. Hint: This
requires no new integration—note that r? = x? + y* +z2, and exploit the
symmetry of the ground state.

(c) Find (x?) in the state n = 2, L = 1, m = 1. Warning: This state is not
symmetrical in x, y, z. Use x = r sin 6 cos ¢.
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(2,0,0) (3,1,0) (4,0,0)

(4,1,0) (4.2,0) (43_)

FIGURE 4.5: Density plots for the hydrogen wave functions (n, I, m). Imagine each
plot to be rotated about the (vertical) z ‘axis. Printed by permission using “Atomin a
Box,”v1.0.8, by Dauger Research. You can make your own plots by going to the Web
site http://dauger.com.

Problem 4.14 What is the most probable value of r, in the ground state of hydro-
gen? (The answer is not zero!) Hint: First you must figure out the probability that
the electron would be found between r and r + dr.

Problem 4.15 A hydrogen atom starts out in the following linear combination of
the stationary states n =2, =1, m=1landn =2,/ =1, m = -1

. 1
W(r.0) = __:/'_—5(1/'/21 1+ Y21-1).

(a) Construct W(r, t). Simplify it as much as you can.

(b) Find the expectation value of the potential energy, {V). (Does it depend on
t?7) Give both the formula and the actual nuiiiber, in electron volts.
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FIGURE 4.6: Surfaces of constant |2 for the first few hydrogen wave functions.
Reprinted by permission from Siegmund Brandt and Hans Dieter Dahmen, The Picture
Book of Quantum Mechanics, 3rd ed., Springer, New York (2001).

4.2.2 The Spectrum of Hydrogen

In principle, if you put a hydrogen atom into some stationary state W, it should
stay there forever. However, if you tickle it slightly (by collision with another atom,
say, or by shining light on it), the electron may undergo a transition to some other
stationary state—either by absorbing energy, and moving up to a higher-energy
state, or by giving off energy (typically in the form of electromagnetic radiation),
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and moving down.'® In practice such perturbations are always present; transitions
(or, as they are sometimes called, “quantum jumps™) are constantly occutring; and
the result is that a container of hydrogen gives off light (photons), whose energy
corresponds to the difference in energy between the initial and final states:

(11
Ey,=E —-E;=-13.6eV|{—5——|. [4.91]
n;oong

Now, according to the Planck formula,'® the energy of a photon is propor-
tional to its frequency:
E, = hv. [4.92]

Meanwhile, the wavelength is given by X = ¢/v, s0

1 . 1 1 .
. n§ 2 [4.93]
where ,
m [ &2 \?
RE_'.(_->=LM%de4 [4.94]
4 ch® \4meg

is known as the Rydberg constant. Equation 4.93 is the. Rydberg formula for the
spectrum of hydrogen; it was discovered empirically in the nineteenth century, and
the greatest tiiumph of Bohr’s theory was its ability to account for this result—and
to calculate R in terms of the fundamental constants of nature. Transitions to the
ground state (ny = 1) lie in the ultraviolet; they are known to spectroscopists as
the Lyman series. Transitions to the first excited state: (ny = 2) fall in the visible
region; they constitute the Balmer series. Transitions to ny = 3 (the Paschen
series) are in the infrared; and so on (see Figure 4.7). (At room temperature, most
hydrogen atoms are in the ground state; to obtain the emission spectrum you. must
first populate the various excited states; typically this is done by passing an electric
spark through the gas.)

+Problem 4.16 A hydrogenic atom consists of a single-electron orbiting a nucleus
with Z protons (Z = I would be hydrogen itself, Z = 2 is ionized helium, Z =3

18Ry its nature, this ifivolves 4 time-dependent interaction, and the details will have to wait for
Chapter 9; for our present purposes the actual mechanism invelved is:immaterial.

19The photon is a quantum of ¢léctromagnetic radiation; it’s a relativistic object if there ever was
one, and thercfore outside the scope of nonrelativistic quanturn mechanics. It will be uscful in a.few
places to:speak of photons, and 1o invoke the Planck formula for their cnergy, but please bear in mind
that this is external to the thcory we are developing,
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FIGURE 4.7: Enetgy levels and transitions in the spectrum of hydrogen.

is doubly ionized lithium, and so on). Determine the Bohr energies E, (Z), the
binding energy E(Z), the Bohr radius a(Z), and the Rydberg constant. R(Z) for a
hydrogenic atom. (Express your answers as appropriate multiples of the hydrogen
values.) Where in the electromagnetic spectrum would the Lyman series fall, for
Z =2 and Z = 37 Hint: There’s nothing much to calculate here—in the potential
(Equation 4.52) > — Z¢?, so all you have to do is make the same substitution in
all the final results.

Problem 4.17 Comsidér the earth-sun system as a gravitational analog to the hydro-
gen atom.

(a) What is the potential energy function (replacing Equation 4.52)? (Leét m be
the mass of the earth, and M the mass of the sun.)

(b) What is the “Bohr radius;” a,, for this system? Work out the actual number.
_ s g y

(c) Write down the gravitational “Bohr formula,” and, by equating E, to the
classical energy of a planet in a circular orbit of radius r,, show that n =
V/¥a/dg. From this, estimate the quantum number n of the earth.
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(d) Suppose the earth made a transition to the next lower level (n — 1). How
much energy (in Joules) would be released? What would the wavelength of
the emitted photon (or; more likely; graviton) be? (Bxpress your answer in
light years—is the remarkable answer?’ a coincidence?)

4.3 ANGULAR MOMENTUM

As we have seen, the stationary states of the hydrogen atom are labeled by three
quantum numbers: #, /, and #. The principal quantum number (n) determines the
energy of the state (Equation 4,70); as it turns out, ! and m arerelated to the orbital
angular momentum. In the classical theory of central forces, energy dand angular
momentum are the fundamental conserved quantities, and it i$ not surprising that
angular momentum plays a significant (in fact; even more important) role in the
quantum, theory. |
Classically, the angular momentum of a particle (with respect to the origin) is
given by the formula
L=rxp, [4.95]

which is to say,
Lx = yp: —zpy, Ly=2px —xpz, Ly =2xpy— yp«. [4.96]

The corresponding quantum operators are obtained by the standard prescription
px — —ihd/dx, py — —ihd/dy, p, — —ihd/dz. In the following section we’ll
obtain the eigenvalues of the angular momentum operators by a purely algebraic
technique reminiscent of the one we used in Chapter 2 to get the allowed energies,
of the harmonic. oscillator; it is all based on the clever exploitation of commutation
telations. After that we will turn to the more difficult probleni ‘of determining the
eigenfunctions.

4.3.1 Eigenvalues

The operators L, and L, do not commute; in fact®!

[Ly, Lyl = [yp; — 2Py, 7Px — xP;]
= [ypg, 2Px] — [¥Pz» xp2] — [2Py, Z0x] + [2Dy, xp2].  [4.97]

20Thanks lo.John Meyer for pointing this out.

21 Note: that all the operators we encounler in quanhim mechanics (footnote 15, Chapter 1) are
distributive with respect to addition: A(B+ C) = AB + AC. In particular, [A, B + C] = |A. B] +
[A, C].
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From the canonical commutation relations (Equation 4.10) we know that the only
operators here that fail to commute are x with p:, y with py, and z with p;. So
the two middle tetrms drop out, leaving

[Lx, Lyl = ypx[pz. 2] + xpylzs pel = ihlxpy — ypx) = ihL;. [4.98]
Of course, we could have started out with [Ly, L;] or [L,, L], but there is no need

to calculate these separately—we can get them immediately by cyclic permutation
of the indices (x = y, y — z, 7 — %)

[Ly, Lyl =ihLy; Ly, Ll =ihLy; Ly, Le] = ihLy. [4.99]

These are the fundamental commutation relations for angular momentum; every-
thing else follows from them.

Notice that Ly, Ly, and L, are incompatible observables. According to the
generalized uncertainty principle (Equation 3.62),

) 1 | N2 h2 ,
0f.01, = (27 <ihLz>> =Ly,

or

=3t

Copon, = Sl(Lo)]. [4.100]

[\

It would therefore be futile to look for states that are simultaneously eigenfunctions:
of Ly and Ly. On the other hand, the square of the total angular momentum,

L2=L+12+12 [4.101]
does commute with L,:

(L%, Lol = [L}, Lyl + (L2, L + (L2, Ly ]
= Ly[Lya LX] + [Lys Ll]Ly + LZ [LZa Lx]+ [Lz: LA]LZ
= Ly(—ihL;) + (—ihL;)Ly + L,(GRLy) + (iR Ly)L,

=0.

(I used Equation 3.64 to simplify the commutators; note also that any operator
commutes with itself.) It follows, of course, that L? also commutes with Ly and
Lg: |

[L2,Ly]=0, [L%L,]=0, [L*L,]=0, [4.102]
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or, more compactly, N
[L? L] =0. [4.103]

So. I.? is ‘compatible with each component of L, and we can. hope to find simulta-
neous eigenstates of L2 and (say) L,:

LPf=xf and L.f =uf. [4.104]

We’ll use a “ladder operator” technique, very similar to the one we-applied to
the harmonic oscillator back in Section 2.3.1. Let.

Ly til,y. [4.105]

t~
H-
|l|

Theé commutator with L, is
[LZ'a Li‘] [Lz.: L ] + I[LZ: Ly] lh l( th ) - + h(L + ZL}r):

50 .
(L Lil="tHAL,. [4.106]

And, of course, )
[L*, L4+]=0. [4.107]

1 claii that if f isan éigenfunction of L? and L., so also is L + f: Equation 4.107

says )
LXLofy=Li(L*f)=Lif) =AMLy ), [4.108]

so L + f is an eigenfunction osz.__, with the same eigenvalue A, and Equation 4.106
says

L(Lyf)=@L,Lyp—LiL)f+LyL,f=ThLsf+Li(uf)
= (w LB (L+ £, [4.109]

so L1 f is an eigenfunction of L, with the new eigenvalue u. L A. We call L,
the “raising” operator, because it increases the eigenvalue of L, by 7, and L_ the
“lowering” operator, because it lowers the eigenvalue by .

For a given value of A, then, we obtain a “ladder” of states, with each
“rung” separated from its neighbors by one unit of # in the eigenvalue of L, (see
Figure 4.8). To ascend the ladder we apply the raising operator, and to descend, the
lowering operator. But this process ¢annot go on forever: Eventually we’re going
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FIGURE 4.8: The “ladder” of angular momentum states.

to-reach a state for which the z-component exceeds the total, and that cannot be.zz-
There must exist a “top rung,” f;, such that®?

Lifi=0. [4.110]

ZFormally, (L2) = (L3) + (L2) + (L), but (L2) = (FIL} ) = (L« f|Lx ) > 0 (and likewisc
for Ly), so. 2 = (L3) + (L3} + p? = p?.

23 Actually, all we. can conclude is (hat L.t f; is fiot normalizable—its norm could be infinite,
instead of zero..Probleni 4.18 explores this alternative.

3
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Let 7l be the eigenvalue of L, at this top rung (the appropriateness of the letter
“I” will appear in a moment):

L fr =hlf; L*fi=Afu [4.111]
Now,
LyLy=(Ly 2 iLy)(Ly FiLly) = L} + L3 Fi(LsLy— LyLy)
=L - L2 Fi(hLy),
or, putting it the other way around,

L=LyLe+LEFhL,. [4.112]

It follows that

L f = (L_Ly+ L2+ RL) fi = O+ B2 + B2 f; = B21{ + 1) £,

and hence - _
A =R+, [4.113]

This tells us the eigenvalue of L2 in terms of the maximumi eigenvalue of L,.
Meanwhile, there is also (for the same reason) a bottom rung, fp, such that

L_fy,=0. [4.114]
Let 4l be the eigenvalue of L, at this bottom rung:
L.fy =hlfs, L%fy = Afi [4.115]
Using Equation. 4.112, we have
L2f = Lyl + L2 AL fy = @+ WL = WD fy = 10— 1) i,

and therefore )
A=nrAI-1). [4.116]

Comparing Equations 4.113 and 4.116, we see that I(l + 1) = [(I — 1), so either
I=1+1 (which is absurd—the bottom rung would be higher than the top rung!)
or else

[=—1 [4.117]
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Evidently the eigenvalues of L, are m#, where m (the approptiateness of this
letter will also be clear in a moment) goes from —/ to 4/ in N integer steps. In
particular, it follows that [ = —/ + N, and hence I = N /2, s0 [ must be an integer
or a half-integer. The eigenfunctions are characterized by the numbers / and m:

L2 = rAA+ V)" Lo fi = hmfl™, [4.118]

where
=0, 1/2, 1, 3/2,...; m=-—I, —1+1,...,1—1, L [4.119]

For a given value of [/, there-are 2/ + 1 different values of m (i.e., 2/ + 1 “rungs”
on the “ladder™).

Some people like to illustrate this result with the diagram in Figure 4.9
(drawn for the case ! = 2). The arrows are supposed to represent possible angular
momenta—in units of % they all have the same length +/I(/ + 1) (in this case
V6 = 2.45), and ‘their z comporents are the allowed values of m (=2, —1, 0, 1,
2). Notice that the magnitude of the vectors. (the radius of the sphere) is greater
than the maximum z component! (In general, JIAFT) > 1, except for the “triv-
ial” case | = 0.) Evidently you can’t get the angular momentum to point perfectly
along the z direction. At first, this sounds absurd. “Why can’t I just pick my axes
so that z points along the ditrection of the angular momentum vector?” Well, to
do this you would have to know all three components simultaneously, and the

FIGURE 4.9: Angular momentum states (for [ = 2).

4
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uncertainty principle (Equation 4.100) says that’s impossible. “Well, all right, but
surely once in a while, by good fortune, I will just happen to aim my z-axis along
the direction of L.” No, no! You have missed the point. It’s not merely that you
don’t know all three components of L; there simply aren’t three components—a
particle just cannot have a determinate angular momentum vector, any more than it
can simultaneously have a determinate position and momeintum. If L, has a well-
defined value, then L, and L, do not. It is misleading even to draw the vectors
in Figure 4.9—at best they should be smeared out around the latitude lines, to
indicate that L, and L, are indeterminate.

1 hope you’re impressed: By purely algebraic means, starting with the fun-
damental commutation relations for angular momentum (Equation 4.99), we have
determined the eigenvalues of L? and L,—without ever seeing the eigenfunctions
themselves! We turn now to the problem of constructing the eigenfunctions, but
I should warn you that this is a much messier business. Just so you know where
we're headed, T'll begin with the punch line: f” = ¥"—the eigenfunctions of
L? and L, are nothing but the old spherical harmonics, which we came upon by

“a quite different route in Section 4.1.2 (that’s why I chose the letters [ and m,
of course). And I can now tell you why the spherical harmonics are orthogonal:
They are eigenfunctions of hermitian operators (L2 and L) belonging to distinet
eigenvalues (Theorem 2, Section 3.3.1).

xProblem 4.18 The raising and lowering operators change the value of 7 by one

unit; "
| Lyf=@ams"* [4.120]
where A7" is some constant. Question: What is Am if the eigenfunctions are to
be normalized? Hint: First show that L is the hermitian conjugate of L ¢ (since
Ly and Ly are observables, you may assume they are hermitian ... but prove it
if you like); then use Equation 4.112. Answer:

Al = ﬁ--\/l(_l +1)—m@m £1)= ﬁx/(l Tm) (U tm+1). [4.121]

Note what happens at the top and bottom of the ladder (i.e., when you apply L
to f} or L_ to f).

*Problem 4.19

(a) Starting with the canonical commutation relations for position and momentum
(Equation 4.10), work out the following commiutators:

[LZ’ ‘x] = ih'y’ [LZ’ y] = _ihx7 [LZ~ Z] - 05

. . .\ 4,122
(Ly, px) = ihpy, [Ly, pyl = —ikpss [Lgs ps] = 0. [4.122]
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(b) Use these results to obtain [L;, L] = iAL, directly from Equation 4.96.

(c) Evaluale the commutators [LZ, r?] and [L,, p?] (where, of course, r> =
x2 +y* + 7% and p‘—px+p)+pz)

(d) Show that the Hamiltonian H = (p®/2m) + V commutes with all three
components of L, provided that V depends only on r. (Thus H, L2 and L,
are mutually compatlble observables.)

* %Problem 4.20

(a) Prove that for a particle in a pofential V (r) the rate of change of the expec-
tation value of the orbital angular momentum L is equal to the expectation
value of the torque:

. (L) = (N),

where

N=rx (=VV).

(This is the rotational analog to Ehrenfest’s theorem.)

(b) Show that d{L)/dt = 0 for any spherically symmetric potential. (This is one
form of the quantum statement of conservation of angular momentum.)

4.3.2 Eigenfunctions

Flrst of all we need to rewrite Ly, Ly, and L, in spherical coordinates. Now,
= (A/i)(r x V), and the gradient, in sphencal coordinates, is: 24

[4.123]
meanwhile, ' = r#, so

h d
L= |:i“(l‘Xl)——{-(T’X9)——|—(} X¢)_9£:|

24Ge‘org_e Arfken an_d Hans-Jurgen Weber, Mathematical Methods for Physicists, 5th-ed., Aca-
demic. Press, Orlando (2000), Section 2.5.

LY
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But (f x #) =0, (F x 0) = ¢, and (F x ¢) = —6 (see Figure 4.1), and hence

(.~ 9 A ) .
i\ ao sinf 3¢,

The unit vectors 0 and ¢ can be resolved into their cartesian components:

0 = (cos 0 cos ¢)i + (cos @ sin @) — (sin@)k; [4.125]
= —(sing)i + (cos )], [4.126]
Thus
[ ~ 0
L= 7 [(_— sing i + cos ¢ _]__)—_
(cosf cos ¢ | cos sing 7 Qk)l L
—Co0 O { 8 1 — <;1n —_—
S $ 080 s ] nd 99
Evidently
L,=" ¢8 cos ¢ cot b 9 ) [4.127]
Ly=—\|—sin¢g— — Ccos - s
i\ %% %) -
| i 9 I |
L,= ?( cos ¢—9 — smqbcot@%) , [4.128]
and
. koo
L, =-_. 4.129
©= 736 [ ]

We: shall also need the raising and lowering operators:
Ly=L;*tiLy=—|(—sing ticos¢)— — (cos¢ T ising)cotd— |,
i 1ol 3¢
But cosp + i sing = eT %, s0
+het® (2 ticotn [4.130]
Ly = 89 ICo 8¢> . 130

In particular (Problem 4.21(a)):

Li.L_=—K i2—+cotei+cot e—aiﬂi" [4.131]
R WP a0 g2 "

3
i
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and hence (Problem 4.21(b)):

13 (. 8 1 92
2= p| —— [sino > a—— 4.132

‘We are now in a position to determine f; (0, ¢). It’s an eigenfunction of LZ,
with eigenvalue A%I(l + 1):

P = ng a0 \" 56 ) * g ag |1 =1 DA

But this is ;precise’ly the “angular equation” (Equation 4.18). And it’s also an eiger-
function of L., with the eigenvalue m#:

ho o
L.fi"= —a—fzm = hmf]",
J1 P _

but this is equivalent to the azimuthal equation (Equation 4.21). We have already
solved this system of equations: The result (appropriately normalized) is the spher-
ical harmonic, Y/" (0, ¢). Conclusion: Spherical harmonics are: eigenfunctions. of
L? and L,. When we solved the Schrodinger equation by separation of variables,
in Section 4.1, we were inadvertently constructing simultaneous eigenfunctions of
the three commuting operators H, L?, and L:

Hy =Ey, L*% =r10+Dy, L =hmy. [4.133]

Incidentally, we can use Equation 4.132 t rewrite the Schrodinger equation (Equa-
tion 4.14) more compactly:

2mr? ar

There is a curious final twist to this story, for the algebraic theory of
angular momentum permits / (and hence also m) to take on half-integer values
(Equation 4.119), whereas separation of variables yielded eigenfunctions only for
integer values (Equation 4.29). You might suppose that the half-integer solutions
are spurious, but it turns out that they are of profound importance, as we shall see
in the following sections.
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+Problem 4.21
{a) Derive Equation 4.131 from Equation 4.130. Hint: Use a tést function; other-
wise you're likely to drop some terms,

(b) Derive Equation 4.132 from Equations 4.129 and 4.131. Hint: Use Equa-
tion 4.112. .

+Problem 4.22

(a) What is L ¥/? (No calculation allowed!)

(b) Use the result of (a), together with Equation 4.130 and the fact that L, ¥} =
hlY, ?, to determine 'Y‘l-l (0 »®), up to a normalization constant.

(c) Determine the normalization constant by direct integration. Compare your
final answer to what you got in Problem 4.5.

Problem 4.23 In Problem 4.3 you showed that
Y20, ¢) = —/15/87 sinf cos 6e’®,

g Apply the raising operator to find .Y%_(O, ¢). Use Equation 4.121 to get the normal-
ization.

Problem 4.24 Two particles of mass m are attached to the ends of a massless rigid
tod of length a. The system is free to rotate in three. dimensions about the center
z (but the center point itself is -'ﬁxe.d)__.

(a) Show that the allowed energies of this rigid rotor are

_ R’n(n+1)

2 7

' ma*

fOI‘ n= Oa-. 1.7 :25 LR
Hint: First express the (classical) enérgy in terms of the total angular momen-
tum,

(b) What are the normalized eigenfunctions for this system? What is the degen-
eracy of the nth energy level?
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In classical mechanics, a rigid object admits two kinds of angular momentum:
orbital (L = r x p), associated with the motion of the center of mass, and spin
(8. = Iw), associated with motion about the center of mass. For example, the earth
has orbital angular momentum attributable to its annual revolution around the sun,
and spin angular momentum coming from its daily rotation about the north-south
axis. In the. classical context this distinction is largely a matter of convenience, for
when you come right down to it, S is nothing but the sum total of the “orbital”
angular momenta of all the rocks and dirt clods that go to make up the earth, as
they circle atound the axis. But an analogous thing happens in quantum mechanics,
and here the distinction is absolutely furidamental. In -addition to orbital angular
momentum, associated (in the case of hydrogen) with the motion of the electron
around the nucleus (and described by the spherical harmonics), the electron also
carries another form of angular momentum, which has nothing to do with motion
in space (and which is not, therefore, described by any function of the position
vatiables 7, 8, ¢) but which is somewhat analogous to classical spin (and for which,
therefore, we use the same word). It doesn’t. pay to press this analogy too far: The
electron (as. far as we know) is a structureless point particle, and its spin angular
momentum cannot be decomposed into orbital angular momenta of constituent
parts (see Problem 4.25).% Suffice it to say that elementary particles carry intrinsic
angular momentum (S) in addition to their “extrinsic” angular momentum (L).
The algebraic theory of spin is a carbon copy of the theory of orbital angular
momentum, beginning with the fundamental commutation relations: .26

[Sx, Syl = ihS;, [Sy, 81 = iaSe, [S;, Sxl= ihSy. [4.134]
It follows (as before) that the eigenvectors of 52 and S; "'satmfy

S |sm) = A%s(s + D|sm);  Syls my = hAmls m); [4.135]

Z5For a contrary interpretation, see Hans C. Ohanidn, “What is Spin?”, Am. J. Phys. 54, 500
(1986).

26We shall take these as postulates Torthe theory of spin; the analogous formulas for orbital angu-
lar momentam (Equation 4.99) were derived. from the known form of the operators (Equduon 4.96). In
a more sophisticated treatment they can both be obtained from rotational invariance-in three dimensions
(see, for example, Leslie E. Ballenting, Quanfum Mechanics: A Modern. Development, World Scientific,
Singapore. (1998), Section 3.3). Indeed, these fundamental commutation relations apply to all forms of
angular momentum, whether spin, orbital, or the combined angular momentum of a composite system,
which could include some spin and some orbital.

2TBecause the e1gcnstdtes of spin are not functions, 1 will us¢ the “ket” notation for them. (I
could have done thé same in Section 4.3, writing [Im) in place of ¥/, but in that context the. function
notation seems more natural.} By tlie way, I'm running out of letters, so I'll use m for the eigenvalue-
of Sz, just as I did for. L, (some-authors writé 7n; and my dt this stage, just to be absolutely clear).

LY
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and

Sy lsm) = h.\/.s*(_;s: + 1) —mm 1) |smt+ D), [4.136]

where S4 = S, T iS,. But this time the eigenvectors are not spherical harmonics.
(they’re not functions of 6 and ¢ at all), and there is no g priori teason to exclude
the half-integer values of s and m: -

3 _
, 1, 5 cery; m=—5,—s+1,...,5s—1,5. [4.137]

It so happens that every elementary particle has a specific and immutable .
value of s, which we call the spin of that particular species: pi mesons have spin
0; electrons have spin 1/2; photons have spin 1; deltas have spiri 3/2; gravitons have
spin 2; and so on. By contrast, the orbifal angular momentum quantum number

I (for an electron in a hydrogen atom, say) can take on any (integer) value you
‘please, and will change from one to another when the system is perturbed. But s

is fixed, for any given particle, and this makes the theory of spin comparatively
simple.2®

Problem 4.25 If the electron were a classical solid sphere, with radius

22

4 egme?

(the so-called classical electron radius, obtained by assuming the electron’s mass is
attributable to energy stored in its electric field, via the Einstein formula E = m ),
and its angular momentum i$ (1/2)%, then how fast. (in m/s) would a point.on the
“equator” be moving? Does this model make sense? (Actually, the radius of the.
electron is known experimentally to be much less than ., but this only makes
matters worse.)

28Indeed, in a mathematical sense, spin 1/2 is the simplest possible nonirivial quantum system, for

it admits just two basis states. In place of an infinite-dimensional Hilbert space, with all its subtleties
and. complications, wé find ours¢lves working in an ordinary 2-dimensional vector space; in place

of unfamiliar differential equalions and fancy functions, we are conlronted with 2 x 2 matrices ‘and
2-component vectors. For this reason, some: authors. begin- ‘quantumn mechanics with the %tudy of spin.
(An outstandmg cxample is John S. Townbend A Modem Approach ro Quantum Mechamcs Umvemty

prefer not to do 1t that way
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4.4.1 Spin 1/2

By far the most important case is s = 1/2, for this is the spin of the particles that
make up ordinary matter (protons, neutrons, and electrons), as well as all quarks
and. all leptons. Moreover, once. you understand spin 1/2, it is a simple matter to
work out the formalism for any higher spin. There are just rwo' eigenstates; l% %),
which we call spin up (informally, 1), and |%'(‘— %)), which we call -spin down
(J). Using these as basis vectors, the general state of a spin-1/2 particle can be
expressed as a two-element column matrix (or spinor):

X = (Z) = ax+ +bx- [4.139]

A+ = (é) [4.140]

= ((1)) [4.141]
for spin down.

Meanwhile, the spin operators become 2 x 2 matrices, which we can work out.
by noting their effect on ). and x_. Equation 4.135 says
3
4

with

representing spin up, and

$'xp=JPxe and &) = hy. [4.142]

If we write S% as a matrix with (as yet) undetermined elements,

2 _[¢€ d .
then the first equation says

__ = | | 3.,
c d\(1\ 3.,/1 c\ | -A°
(6’ :f) (0) =" (0)’ > (6) =14

soc=(3 /4‘)}2'2 and ¢ = 0. The second equation says

020 - (0-()

sod =0and f = (3/Hh%. Conclusion:

S _-Zh 0 1) [4.143]



174

Chapter 4 Quantum Mechanics in Three Dimensions

Similarly, .
Sex+ =Xt Sex—=-7x-, [4.144]
2 2
from which it follows that .
: (1 0
S.=3 (0 _1) . [4.145]

Meanwhile, Equation 4.136 says

S.x- =hxs, S x4 =hx-, Syxy =S_x-=0,

80 . .
e {0 T e _.(0 0 o
S.=h (0 0) , S_= h..(l 0) : [4.146)
Now S3 = Sy £iS;, s0 8 = (1/2)(Sy + S_) and S, = (1/2i)(Sy — S_), and
.. hence e . 5 .
S =3 (..1 0__) . Sy=3 (Z 0 ) : [4.147]

Since Sy, Sy, and S, all carry a factor of /2, it is tidier to write S = (4/2)a,

‘where
{01 (0 ~i (1 0 o

These are the famous Pauli spin matrices. Notice that S,, Sy, S, and S? are all
hermitian (as they should be, since they represent observables). On the other hand,
S.. and S_ are not hermitian—evidently they are not observable.

The eigenspinors of S, are (of course):

Xy = (é) , (eigenvalue+ E) X = ((1)) . (eig’envalue - 5) . [4.149]

1If you measure S, on a particle in the general state x (Equation 4.139), you could

get +7/2, with probability |a|?, or —%/2, with probability |b|?. Since these are the

only possibilities,

lal® + b =1 [4.150]

(i.e., the spinor must be normalized).?

2:9Pe'0_ple often say'-that: |-c_1.]--2 is the “probability that the particle is in the..spin-up state;” but this
is sloppy language; what they mean is that if you measured .S;, |a]? is the probability you'd get #/2.
See footnete 16 in Chapter 3.
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But what if, instead, you chose to measure S,? What are the. p-ossibl'e results,
and what are their respective probabilities? According to the generalized statisti-
cal interpretation, we need to know. the. eigenvalues and eigenspinors of S,. The
characteristic equation is

B 2 2
_ 2= (2) =+
ny —a| =0 __( ) =>A_i2...

2

—A k/Z"

Not surprisingly, the possible values for S, are the same as those for S,. The
eigenspinors are obtained in the usual way:

:(00)(5)=+26) = (0)=+6).

so B = T «. Evidently the (normalized) eigenspinors of Sy -are

1y

—

X_:(:“) = Jf , (gigcnvalue—# -2-) _XE) =

As the eigenvectors of a hermitian matrix, they span the space; the generic spinor
x (Equation 4.139) can be expressed as a linear combination of them:

' a+b> (x) (\a—b) _-(x') .
= (E2) 9 4 (22 @ [4.152]

If you measure Sy, the probability of getting +%/2 is (1/2)|a + k|, and the
probability of getting —#4/2 is (1/2)|a — b|?. (You should check for yourself that
these probabilities add up to 1.)

B\
\ (ei.genva]ue — 5) .[4.151]

gL

Example 4.2 Suppose a spin-1/2 particle is in the state

(1)

What are the probabilities of getting +7/2 and —7#/2, if you measure §; and S,?

Solution: Here a = (1+i)/+/6 and b= 2/+/6, so for §, the probability of getting
+4/2 is |(1 +7)/+/6/*> = 1/3, and the probability of getting —%/2 is [2/+/6]> =
2/3. For S, the probability of getting +7%/2 is (1/2)|(3 + i)/+/6|> = 5/6, and

3
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the probability of getting —#/2 is"(1/2)[(—1 + i) /+/6]* = 1/6. Incidentally, the

expectation value of Sy is
5 '_+h-"+1 AR
6\ 2/ 6\ 2/ 3
which we could also have obtained more directly:

a—-H 2 ) ( 0 k-/z_') ((1+i:_)_/\/€> _h
V6 6/ \B/2 0 2///6 ) 3

(Sy) = x'Syx = (

I'd like now to walk you through an imaginary measurement scenario involv-
ing spin 1/2, because it serves to illustrate in very concrete terms some of the
abstract ideas we discussed back in Chapter 1. Let’s say we start out with a parti-

_cle in‘the state xy. If someone asks, “What is the z-Component of that particle’s
spin angular momentum?”, we could answer unambiguously: +7% /2. Fora measure-
ment of S, is certain to return that value. But if our interrogator asks instead, “What
is the x-component of that particle’s spin angular momentum?”’ we are obliged to.
equivocate: If you measure S, the chances are fifty-fifty of getting either %/2 or
—#/2. If the questioner is a classical physicist, or a “realist” (in the sense of Section
1.2), he will regard this as an inadequate—not to say impertinent—response: “Are
you telling me that you don’t know the true state of that patticle?” On the contrary;
I know precisely what the state of the particle is: x,.. “Well, then, how come you
can’t tell me what the x-component of its spin is?” Because it simply does not
have a particular x-component of spin. Indeed, it cannot, for if both S, and S,
were well-defined, the uncertainty principle would be violated.

At this point our challenger grabs the test-tube and measures the x-component
of its spin; let’s say he gets the value +#/2. “Aha!” (he shouts in triumph), “You
lied! This particle has a perfectly well-defined value of S,: %/2.” Well, sure—it
does row, but that doesn’t prove it kad that value, prior to your measurement. “You
have obviously been reduced to splitting hairs. And anyway, what happened to your
uncertainty principle? I now know both S, and S;.” I'm sorry, but you do not: In
the course of your measurement, you altered the particle’s state; it is now in the
staté y S’f)', and whereas you know the value of Sy, you no longer know the value of
S;. “But I was. extremely careful not to disturb the particle when I measured S,.”
Very well,. if you don’t believe me, check it out: Measure S;, and see what you
get. (Of course, he may get +#/2, which will be embarrassing to my case—but if
we repeat this whole scenario over and over, half the time he will get' —# / 2)

To the layman, the philosopher, or the classical physicist, a statement of the
form “this particle doesn’t have a well-defined position” (or momentum, or x-
component of spin angular momentum, or whatever) sounds vague, incompetent,
or (worst of all) profound. It is none of these. But its precise meaning is, I think,
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almost impossible to convey to anyone who has not studied quantum mechanics
in. some depth. If you find your own comprehension slipping, from time to time
(if you don’t, you probably haven’t understood. the proble_m),, come back to the
spin-1/2 system: It is the simplest and cleanest context for thinking through the
conceptual paradoxes of quantum mechanics.

Problem 4.26

(a) Check that the spin matrices (Equations 4.145 and 4.147) obey the funda-
mental commutation relations for angular momentum, Equation 4.134.

(b) Show that the Pauli spin matrices (Equation 4.148) satisfy the product rule

ojok =8k +1 Y €juion, [4.153]
1

where the indices stand for x, y, or z, and €4 is the Levi-Civita symbol:
+1if jkl =123, 231, or 312; —1 if jkl = 132, 213, or 321; 0 otherwise.

xProblem 4.27 An electron is in the spin state:

3
x=A4 (4) -

(a) Determine the normalization constant A.
(b) Find the expectation values of Sy, Sy, and S;.

(c) Find the “uncertainties” o7, os,, and og,. (Note: These 91gmas are standard
deviations, not Pauli matrices!)

(d) Confirm that your results are consistent with all three uncertainty principles
(Equation 4.100 and its cyclic permutations—only with § in place of L, of
course).

*Problem 4.28 For the most general normalized spinor x (Equation 4. 139) com-
pute (Sx}, (Sy); (o), (S3), (S3), and (§2). Check that (82) + (S 3+ (52)
= (§2).

xProblem 4.29
(a) Find the cigenvalues and eigenspinors of Sy.

Y



—_——
o+

178 Chapter-4 Quantum Mechanics in Three Dimensions

(b) If you measured Sy on a particle in the general state  (Equation 4.139),
what values might you get, and what is the probability of each? Check that
the probabilities add up to 1. Note: @ and b need not be real!

(c) If you measured S2, what values might you. get, and with what probabilities?

s +Problem 4.30 Construct the matrix S, representing the component of spin angular
momentum along an arbitrary direction 7. Use spherical coordinates, for which

7 =sinf cos¢7 +sind sind j + cosd k. [4.154]

Find the eigenvalues and (normalized) eigenspinors of S;.. Answer:

Lo _ [ cos9/2) o _ (e sin(8/2)" |
. (eid) sin(0/ 2)> A== ( — cos(9/2) >; [4.155]

Note: You're always free to multiply by an arbitrary phase factor—say, ¢'¥ —so
your answer. may not look exactly the same as mine.

Problem 4.31 Construct the spin matrices (S;, Sy, and S;) for a particle of
spin 1. Hint: How many eigenstates of S are there? Determine the action of S,
Sy, and S_ on each of these states. Follow the procedure used. in the text for
spin 1/2.

4.4.2 Electron in a Magnetic Field

A spinning charged particle constitutes a. magnetic. dipole. Its magnetic dipole
moment, |1, is proportioenal to its spin angular momentum, S:

L= yS: [4.156]

the proportionality constant, y, is called the gyromagnetic rfc_ltio__.30 When a mag- ‘
netic dipole is placed in a magnetic field B, it experiences a torque, | x B, which

30See, for example, D. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice Hall, Upper
Saddle River, NI, 1999), page 252. Classically, the. gyromagnetic ratio of 4n object whose charge and
mass arc identically distributed is g/2m, wheré g is the charge and m is the mass. For reasons that are
fully explained only in rélativistic quantum theory, the gyromagnetic, ratio. of the electron is (almost)
exactly twice the ¢lassical valug: y = —e¢/m,
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tends fo line it up parallel to the field (just like a compass needle). The energy
associated -with this torque is3!

H=—p-B, [4.157]

so the Hamiltonian of a spinning charged particle, at rest’® in a magnetic field B,
is

H=_yB-S. [4.158]

Example 4.3 Larmor precession: Imagine a particle of spin 1/2 at rest in a
uniform magnetic field, which points in the z-direction:

B = Byk. [4.159]

The Hamiltonian (Equation 4.158), in matrix forin, is

| yBohi (1 0
H=—yBoS, = -~ > ((1) _0_1) . [4.160]

The eigenstates of H are the same as those of S;:
X With energy Ey = —(y Boh)/2, 4.161
X—, with energy E_ = +(y Bph)/2. [4.161]

Evidently the energy is lowest when the dipole moment is parallel to the field—just
as it would be classically.

Since the Hamiltonian is time-independent, 'the general solutlon to the time-
dependent Schrodinger equation,

d
X — Hy

7 ;
th—r =Hx

[4.162]

can be expressed in terms of the stationary states:

() = axse FHIE L by o TE-t/h_ (@ gy Bot/2
X ax+e T oX-¢€ be—zyB()t/Z

31 Griffiths (footnote 30), page 281.

32Tf the particle is allowed to move, there will also be kinetic energy to consider; moreover, it
will be subject to the Loventz force (gvx B), which is not.dcrivable: from a potenlial energy function,
and hence ‘does.not fit the Schrédinger equation as. we have formulated it so far. I'I1 show you later
on how to handle this (Problem 4.59), but for the moment let 's just assume that the paiticle is free
rotate, bul otherwisé statiopary.
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The constants: ¢ and b are determined by the initial conditions:

o -"a"'
x(©0) = (b)’

(of course, |a|?> + |b]> = 1). With no essential loss of gcnerality33 I'll write a =
cos(a/2) and b = sin(a/2), where « is a fixed angle whose physical significance
will appear in a moment. Thus

( iny i 7 Bot /2
X0 = ( cos(ar/2)e’r %0t/ ) [4.163]

' S‘ln(a/Z)e—EV B()I_/Q.

To get a feel for what is happening here, let’s calculate the expectation value of S,
as. a function of time:

(Sx) = X (OT8xx(t) = (cos(e/2)e 7 B01/?  sin(a/2)e!v50!12)

A0 1Y [ cosa/2)elvBui/2 |
* 2 (1 0) (;s_'in_(a J2ye v Bot/2 [4.164]

= 5 sinev cos(y Bot).

Similarly,
(Sy) = )’((l")TS'yX (1) = —_—Z— sina sin(y Bgr), [4.165]
and "
(S) = x(@)'Sx(t) = Ecosa. ' [4.166]

Evidently (S} is tilted at a constant angle a to the z-axis, and precesses about the
field. at the Larmeor frequency
w=Y Bo, [4167]

just as it would classically>* (see Figure 4.10). No surprise here— Ehrenfest’s
theorem (in the form derived in Problem 4.20) guarantees that (S} evolves accord-
ing to the classical laws. But it’s nice to see how- this works out in a specific
context.

33This does assume that a and b are real: you can work out the general case if you like, but all
it.does is add a constant to .

34gee, for instance, The Feynman Lectures on Physics (Addison-Wesley, Reading, 1964), Volume
II, Section 34-3. Of course, in the classical case it is the angular momentum vector itself, not just its

expectation value, that precesses around the magnetic. field.

R
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; FIGURE 4.10: Précession of {8) in a
x“ upiform magnetic field.

Example 4.4 The Stern-Gerlach experiment: In an inhomogeneous magnetic
field, there is not only a forque, but also a force, on a magnetic dipole:>

F=V{.B). [4.168]

This force can be used to separate out particles with a particular 'spin orienta-
tion, as follows. Imagine a beam of relatively heavy neutral atoms, 36 traveling in
the y direction, which passes through a région of inhomogeneous magnetic field
(Figure 4.11)—say,

B(x,y,z) = —axi + (By + a.z)lz, [4.169]
where By is a strong uniform field and the constant « describes a small deviation
from homogeneity. (Actually, what we’d like is just the z component, but unfortu-
nately that’s impossible—it would violate the electromagnetic law V ‘B = 0; like

it or not, an x component comes along for the ride.) The force on thesé. atoms is

F = ya(—Si + 8:k).

SGriffiths. (footnote 30), page 258. Note ithat F is the negative gradient of the energy
(Equation 4.157). '

36We make thém neutral so 48 to avoid the large-scale deflection that would olherwise result
from the Lorentz force, and heavy so we can construct localized wave packets and (reat the miotion
in lerms of -classical particle trajectories. In practice, the Stern-Gerlach experiment doesn’t work, for
example, with a beam of free electrons.

B
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/’ Spin up

<y

T Spin down

Magnet

FIGURE 4.11: The Stern-Gerlach apparatus.

But because of the Larmor precession about By, S: oscillates _r'ap'idl;y, and
averages to zero; the net force is in the z direction:

F,=yasS,, [4.170]

“and the beam is deflected up or down, in proportion to the z component of the
spin angular momentum. Cl'a'ssic.ally we'd expect a smear (because. S, would net.
be quantized), but in fact the beam splits into 2s + 1 separate streams, beau-
tifully demonstrating the quantization. of angular momenturi. (If you use silver
atoms, for example, all the inner electrons: are paired, in such a way that their
spin and orbital angular momenta cancel. The net spin is simply that of the
'outeﬂhOst—unpaircd—electIOn, so in this case s = 1/2, and the beam splits
in two.) |

Now, that argument was purely classical, up to the very final step; “force™
has no place in a proper quantum calculation, and you might therefore prefer
the following approach to the same problem.?” We examine the process from the
perspective of a reference frame that moves along with the beam. In this frame the
Hamiltonian starts out zero, turns on for a time T (as the particle passes through
the magnet), and then turns off again:

0, for ¢ <0,
H® = {—yBo+u0)S, for0<r<T, [4.171]
0, fort > T.

(I ignore the pesky x component of B, which—for reasons indicated above—is
irrelevant to the problem,) Suppose the atom has spin 1/2, and starts out in the
state '

x@®) =axy +bx—, forr=<0.

37This atgument. follows L. Ballentine (footnote 26) Seetion 9.1,
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‘While the Hamiltonian acts, x(¢) evolves in the usual way:

x(t) = ayye B+ f py_ e BN for 0 <t < T,

where (from Equation 4.158)
Ei =Fy(Bo+az), [4.172]

and hence it emerges in the state

x () = (ael?T 00/, ) VTP g (pe i TBy Y @ T2z [4.173)
(for £ > T). The two terms now cairy momentum in the z direction (see Equa-
q
tion 3.32); the spin-up component has momentum

ayTh
2 7

P = [4.174]

and it moves in the plus-z direction; the spin-down component has the oppo-
site momentum, and it moves in the minus-z direction. Thus the beam splits
in two, as before. (Note that Equation 4.174 is consistent with the earlier result
(Equation 4.170), for in this case S, = /2, and p, = F,T.)

The Stern-Gerlach experiment has played an important role in the philosophy
of quantum mechanics, where it serves both as the prototype. for the preparation
of a quantum state and as an illuminating model for a certain kind of quantum
measurement. We tend casually to assume that the initial state of a system is known.
(the Schrédinger equation tells us how it subsequently evolves)—but it is natural
to wonder how you get a system into a particular state in the first place. Well, if
'you want to prepare a beam of atoms in a given spin configuration, you pass an
unipolarized beam through a Stern-Gerlach magnet, and select the outgoing stream
you are interested in (closing off the others with suitable baffles and shutters).
Conversely, if you want to measure the z component of an atom’s spin, you send
it through a Stern-Gerlach apparatus, and record which bin it lands in. I do not
claim that this is always the most practical way to do the job, but it is conceptually
very clean, and hence a useful context in which to explore the problems of state
preparation and measurement. |

Problem 4.32 In Example 4.3:

(a) If you measured the component of spin angular momentum along the x
direction, at time ¢, what is the probability that you would get +7%/2?
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(b) Same question, but for the y.component.

(c) Same, for the z component,

+ xProblem 4.33 An electron is at rést in an oscillating magnetic field
B =By cos(wt)k,

where By and . are constants.

(a) Construct the Hamiltonian matrix for this syster.

(b) The electron starts out (at t = 0) in the spin-up state with respect to the
x-axis (that is: x (0) = Xf))- Determine x (¢) at any subsequent time. Beware:
This is a time-dependent Hamiltonian, so you cannot get x(z) in the usual
way from stationary ‘states. Fortunately, in this case you can solve the time-
dependent Schrodinger equation (Equation 4.162) directly.

(c) Find the probability of getting —#/2, if you measure Sy. Answer:

sin® (V—B" s’i‘n(_wt)) .
20w '

(d) What is theé ‘minimhum field (Bp) required to force a complete flip in S, ?

4.4.3 Addition of Angular Momenta
Suppose now that we have two spin-1/2 particles—for example, the électron and

the proton in the ground state®® of hydrogen. Each can have spin up or spin down,
so there are four possibilities in all:””

005 P I TR A [4.175]

where the first arrow refers to the electron and the second to the proton. Quéstion:
What is the fotal angular momentum of the atom? Let

S=80 4+ §@ [4.176]

381 put them in the ground state so there won't be any orbital angular mefcntam to worry about.

391\/[_0_1‘_&;_ precisely, each particle is in a linear combination of spin up and spin. down, and. the
composite system is in a linear combination of the four states. listed.
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Each of these fout composite states is an eigenstate of S;—the z components
simply add:
Sexixe = (S8 + S = S x0xe + 1159 x)
= (Am1x1) x2 + x1(Bmz x2) = R{my + ma) X1 x2,

(note that S acts only on x1, and S acts only on x»; this notation may not be
elegant, but it does the job). So m (the quantum number for the composite system)
is just my + ma:

Mom =1

N m=0;

It m=0;

: m=—1.

At first glance, this doesn’t look right: m is supposed to advance in integer

steps, from —s to +s, so it appears that s = 1—but there is an “extra” state

with m = 0. One way to untangle this problem is to apply the lowering operator,
s_ =5 4+ 5% to the state 44, using Equation 4.146:

SN =6 D4 +162
=ED T+ E D =80+ ).

‘Evidently the three states with s = 1 are (in the notation |s m)):

11y =M
10) =+t ¢ s =1 (riplet). [4.177]
Lit-1=14

(As a check, try applying the lowering operator to |1 0); what should you get? See
Problem 4.34(a).) This is called the triplet combination, for the obvious reason.
Meanwhile, the orthogonal state with m = 0 carries s = 0:

{looy = 5ty =4} s =0 single. (4.178]

(If you apply the raising or lowering operator to this state, you’ll get zero. See
Problem 4.34(b).)
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I claim, then, that the combination of two spin-1/2 particles can carry a total

'spin of 1 or 0, depending on whether they occupy the triplet or the singlet config-

uration. To confirm this, I need to prove.that the triplet states are eigenvectors of
52 with eigenvalue 242, and the singlet is an eigenvector of S with eigenvalue
0. Now,

§2 = (M ¢ S@)y. (S(l:.) 4+ S-@:)") — (52 4 (_S(2)-)'2, +28M. . @ [4.179]
Using Equations 4.145 and 4.147, we have

SO 821 = (8P DEL D+ P DEP D+ P HSP b
B\ (R in \ (—ih o\ (—h
-G9G)G)E ) GG

o
= Z(Z =1

Similarly,

. %
s §A 4y = Z@MN I

It follows that
2

OOy =2 e n =20, sy

T
and
2 9

3n o
J_(Z =N =21+ = —— 100 [4.181]

Returning to Equation 4.179 (and using. Equation 4.142), we conclude that

SB.§@ 100y =

| (362 3r2 w2
S2110) = (% + +2r ) |10) = 2A%|10), [4.182]

s0 |10) is indeed an ¢igenstate of $2 with eigenvalue 252 and

‘3n2  3p2 3m2\
52|00>=( T2 4)|00>:0, [4.183]

so |00) is an eigenstate of §? with eigenvalue 0. (I will leave it for you to confirm
that |11) and |1 —1) are eigenstates of $2, with the appropriate eigenvalue—see
Problem 4.34(c).)

PN

i
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What we have just done (combining spin 1/2 with spin 1/2 to get spin 1 and
spin 0) is the simplest example of a larger problem: If you combine spin s; with
spin s, what total spins § can you get?49 The answer*! is that you get every spin
from (s1 + s2) down to (s1 — s2)—or (s3 — s1), if 57 > 51 —in integer steps:

s=(s1+52), 1+s2-1), Gr1+s-2), ..., |s1— 9l [4.184]

(Roughly speaking, the highest total spin occurs when the individual spins ‘are
aligned parallel to oné¢ another, and the lowest occurs when they are antiparallel.)
For example, if you package together a particle of spin 3/2 with a particle of spin
2, you could get a total spin of 7/2, 5/2, 3/2, or 1/2, dépending on the configuration.
Another example: If a hydrogen atom is in the state ¥y, the net angnlar momen-
tum of the electron (spin plus orbital) is [ + 1/2 or { — 1/2; if you now throw. in
spin of the proton, the atom’s total angular momentum quantum number is / + 1,
1, orf —1 (and [ can be achieved in two distinct ways, depending on whether the
electron alone is in the [ + 1/2 configuration or the { — 1/2. configuration).

The combined state. |s m) with total spin s and z-component /i will be: some
linear combination of the composite states |s; n21)|s2 m2):

s m) = Z Cotiz st m)|s2 ma) [4.185]

nt Hmy=m

(because the z components add, the only composite states that contribute are those
for which m + my = in). Equations 4.177 and 4,178 are special cases of this
general form, with 5 = s = 1/2 (I used the informal notation 1 = [% %)_, J =
|% —1))). The constants C) 4, are called Clebsch-Gordan coefficients. A few
of the simplest cases are listed in Table 4.8.42 For example, the shaded column of
the 2 x.1 table tells us that

o =-Lnn— /3120 L 11
30) = LD 1)+\/g|2,.0)|1o>+ﬁ|2 1)[11).
In particular, if two particles (of spin 2 and spin 1) are at rest.in a box, and the total

spin is 3, and its z component is 0, then a measurement of Sz(..l) could return the
value # (with probability 1/5), or 0 (with probability 3/5), or —# (with probability

401 say spins, for simplicity, but either one: (or both) could just -as wcll be orbital angular
momentum (for which, however, we would use the letter 1), '

4l Eor a proof you must look in a more advanced text; see, for instanee, Claude Cohen-Tannoudji,
Bernard Diu, and Franck Lalog, Quanium Mechanics, (Wiley, New York, 1977), Vol. 2, Chapter X.

2The general formula is derived in Amo Bohm, Qudntum Mechanics: Foundations and Appli-
cations, 2nd ed., (Springer, 1986), p. 172.

K
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TABLE 4.8:  Clebsch-Gordan coefficients. (A square root sign i uridérstood for
evety entry; the minus sign, if present, goes outside the radical.)

_ 1
12 x 12} i 2x 12,9
szitiz] o o X Ve sl
ESIETZE AR -1 i 2 2] 1]az e
-2 ARz e |- 2 12|15 4| a2 g
| BSEERE w1 w2 4s sl g HiR
11 -1/2- 2/5 3,_;5 52 B2
v umBR 0 412 | a5 2] <
1% 1/2 340 1 T —
3i2 152 ) 35 25| 52 3R
L=+ ] 1 )neae - +2| 25 -ans)-ar -3
i 2| 13 2a] 82 12 32 % 121 . -1 12| 45 5] 52
0 «ap | emarlE e IE /12 2 _2 | 115 45 |5
02| 2:a wa[ a2 e N Rl A
—1 {152 13 -2i3)-3/2 02 12 111 2 R
B | ST a1 | 2 Hije s Ao 0
PR I X1 | 5o w12, 12 [ e[z 1
). - I [
2 4] 1]s2 2 132 =1 | 1 |vaie +am 2 A |12 el 1
+2 of13 23f 8 2 1 ™ 0|25 alf 52 a2 1R RFREF) ETEET! I
128 181 1 4 v w12 +1 |35 2/5 AR 112 142 o M)
w2 -1 115 1/3 3/, 0 255 /2 . |32 -12] 1
1x1].3 +1 o |as 18 -ano fPEE 2 rieienge 52 32 12
3 aray | I e - C1[ar0 -85 16 |12 12 12
1 +1] 1]+ ey +12 21| 3/10 845 178 -
7 o0lve 1202 1 0 0 0 3 2 1 -1/ 0|35 15 -3 62 32
+o i -t 0 o 0 -1+ -1 1 A 2 1| 110 -5 12 -2 82
M 1 [1/6 12 113 615 12 /10 12 -1 a5 )52
0 0|28 0 -m3fl2 1 |ens 16 -siof.3 2 -322 0| 215 3i5|-52
R Rl s 835 |2 2 [-a2 =1
0-1{t2 fq] 2 -1 1128 173§ 3
-1 8ji2 -12]-2 -2 0]1/3 -2/33-3
== 120t

1/5). Notice that the probabilities add up to.1 (the sum of the squares of any ¢olurnn
on the Clebsch-Gordan table is 1).
These tables also work the other way around:

sumi)lsamg) =y CoBE |sm). [4.186]

¥

For example, the shaded row in the 3/2 x 1 table tells us that

12 1y 5 /131 111
|5 2)110) = \/_IEE"‘ Elgz)—-\/;lja),

If you put particles of spin 372 and spin 1 in the box, and you know that the
first has m; = 1/2 and the second has my = 0 (so m is necessarily 1/2), and
you measure the fotal spin, s, you could get 5/2 (with probability 3/3), or 3/2
(with probability 1/15), or 1/2 (with probability 1/3). Again, the sum of the prob-
abilities is 1 (the sum of the squares of each row on the Clebsch-Gordan table
is 1). :

If you think this is starting to sound like mystical numerology, 1 don’t blame
you. We will not be using the Clebsch-Gordan tables- much in the rest of the
book, but I wanted you to know where they fit into the scheme of things, in case
you encounter them later on. In a mathematical sense this is all applied group
theory—what we are talking about is the decomposition of the direct product of
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two irreducible representations of the totation group into a direct siim of irreducible
representations (you can quote that, to impress your friends).

xProblem 4.34

(a) Apply S- to [10) (Equation 4.177), and confirm that you get +/2A|1 —1).
(b) Apply S+ to [00) (Equation 4.178), and confirm that you get zero.

(c) Show that |11) and |1 —1) (Equation 4.177) are eigenstates of S, with the
appropriate eigenvalue.

Problem 4.35 Quarks carry spin 1/2. Three quarks bind together to make a baryon
(such -as the proton or neutron);, two quarks (or more precisely a quark and an
antiquark) bind together to make a meson (such as the pion or the kaon). Assume
the quarks are in the ground state (so the orbital angular-momentum is zero).

(a) What spins are possible for baryons?

(b) What spins are possible for mesons?

Problem 4.36

(a) A particle of spin 1 and a particle of spin 2 are at rést in a configuration
such that the total spin is 3, and its z component is #. If you measured the
z component of the angular momentum of the spin-2 particle, what values
might you get, and what is the probability of each one?

(b) An electron with spin down is in the state ¥5)( of the hydrogen atom. If you
could measure the total angular momentum squared of the electron alone
(not including the proton spin), what values might you get, and what is the
probability of each?

Problem 4.37 Determine the commutator of $? with S.Z(-_l') (where § = S +§@),
Generalize your result to- show that

Comment: Because Sgl) does not commute with S, we cannot hope to find states
that are simultaneous eigenvectors of both. In order to form eigenstates of S we

Al
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need [inear combinations of ¢igenstates of S:(U This s precisely what the Clebsch-
Gordan coefficients (in Equation 4.185) do for us. On the other hand, it follows by
obvious inference from Equation 4.187 that the sum S +S@ does commute with
$2, which is a special case of something we already knew (see Equation 4.103).

FURTHER PROBLEMS FOR CHAPTER 4

«Problem 4.38 Consider the three-dimensional harmonic oscillator, for which
the potential is.

1 - |
V) = imwzrz. [4.188]

{(a) Show that separation of variables in cartesian coordinates turns this into
three one-dimensional oscillaters; and exploit your knowledge of the latter
to determine the allowed energies. Answer:

E; = (n + 3/2)hw. [4.189]

(b) Determine the degeneracy d(n) of E,.

* % ¥Problem 4.39 Because the three-dimensional harmonic oscillator potential (Equa-
tion 4.188) is spherically symmetric, the Schrodinger equation can be handled by
separation of variables in spherical coordinates, as well as cartesian coordinates.
Use the power series method to solve the radial equation. Find the recursion formula
for the coefficients, and détermine the allowed energies. Check your answer against
Equation 4.189.

%*Problem 4.40
(a) Prove the three-dimensional virial theorem:
2T) = (F-VV) [4.190]

(for stationary states). Hint: Refer to Problem 3.31,

(b) Apply the virial theorem to the case of hydrogen, and show that

(T) = —Ey; (V) =2E,. [4.191]
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(¢) Apply the virial theorem to the three-dimensional harmonic oscillator (Prob-
lem 4.38), and show that in this case

(T) = (V) = E, /2. [4.192]

x % *Problem 4.41 [Attempt this problem only if you are familiar with vector cal-
culus.] Define the (three-dimensional) probability current by generalization of
Problem 1.14:

i, . _ _ _
J= = (U VW — W VW) [4.193]
2m
(a) Show that J satisfies the continuity equation

AN
V= [4.194]

which expresses local conservation of probability. It follows (from the
divergence theorem) that

/__J_ . da:——_d_—] 111/'12 d.'3.r, [4.195]
s dt Jy

where V is a (fixed) volume and S is its boundary surface. In words: The flow
of probability out through the surface is equal to the decrease in probability
of finding the particle in the volume.

(b) Find J for hydrogen in the state n.=2, [ = 1, m = 1. Answer:

h

—1'/.{1' vl E-A.
rm— e sing ¢.

(¢) If we interpret mJ as the flow of mass, the angular momentum is
L:mf(rxJ)d3r.

Use this to calculate L. for the state 211, and comment on the result.

% * *Problem 4,42 The (time independent) momentum space wave function in three
dimensions is defined by the natural generalization of Equation 3.54:

$(p) = / e POy (1) dr. [4.196]

1
k)32
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(a) Find the momentum space wave function for the ground state of hydrogen
(Equation 4.80). Hint: Use spherical coordinates, setting the polar axis along
the. direction of p. Do the 6 integral first. Answer:

o) = 2a\*"? 1 | 4.167]
WE\R) Ut @ o

(b) Check that ¢(p) is normalized.

(c) Use ¢(p) to caleulate {p?), in the ground state of hydrogen.

(d) What is the expectation value of the kinetic energy in this state? Express
your answer as a multiple of Ej, and check that it is- consistent with the
virial theorem (Equation 4.191).

Problem 4.43

| (a) Construct the spatial wave function (¥) for hydrogen in the state n = 3,
I =2, m= 1. Express your answer as a function of r, 0, ¢, and 4 (the
Bohr radius) only—no other variables (p, z, etc.) or functions (¥, v, etc.), or
constants (A, cp, etc.), or derivatives, allowed (7 is okay, and ¢, and 2, efc.).

(b) Check that this wave function is properly normalized, by carrying out the:
appropriate integrals over r, @, and ¢.

(c) Find the expectation value of #* in this state. For what range of s (positive
and negative) is the result finite?

Problem 4.44

(a) Construct the wave function for hydrogen in the state n = 4,1 = 3, m = 3.
Express your answer as a function of the spherical coordinates r, 6, and ¢.

(b) Find the expectation value of r in this state. (As always, look up any nontrivial
integrals.)

(c) If you could somehow measure the observable L2 + L2 on an atom in this
state, what value (or values) could you get, and what is ‘the probability of
each?

Problem 4.45 What is the probability that an electron in the ground state of hydro-
gen will be found inside the nucleus?

(a) First calculate the exact answer, assuming the wave function (Equation 4.80)
is correct all the way down to » = 0. Let b be the radius of the nucleus.

f T e ke st



(b)

(c)

(d)
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Expand your result as a power series in the small number € = 2b/a, and
show that the lowest-order term-is the cubic: P =~ (4/3)(b/ a)3. This should
be a suitable approximation, provided that b < a (which it is).
Alternatively, we might assume that v.(r) is essentially constant over the
(tiny) volume of the nucleus, so that P &~ (4/3)7b°|y(0)|2. Check.that you
get the same answer this way.

Use b~ 1075 mand a ~ 0.5 x 1079 m to get a numerical estimate for P.
Roughly speaking, this represerits the “fraction of its time that the electron
spends inside the nucleus.”

Problem 4.46

(a)

Use the recursion formula (Equation 4.76) to confirm that when [ = n — 1
the radial wave function takes the form

—r/na
- ki

R'n(n_:—'l) = Nni"n_le
and determine the normalization constant N, by diréct integration.
Calculate {r) and (%) for states of the form. v, —1ym-

Show that the “uncertainty” in » (o,) is {r)/+/2n + 1 for such states. Note
that the fractional spread in » decredses, with increasing » (in this sense the
system “‘begins to: look classical,” with identifiable circular “orbits,” for large

n). Sketch the radial wave functions for several values of n, to illustrate this
point. '

Problem 4.47 Coincident spectral lines.*> According to the Rydberg formula
(Equation 4.93) the wavelength of a line in the hydrogen spectrum is determined
by the principal quantum numbers of the initial and final states. Find two distinct
pairs {n;, 7 ¢} that yield the same M. For example, {6851, 6409} and {15283, 11687}
will do it, but you’re not allowed to use those!

Problem 4.48 Consider the observables A = x? and B = L,.

(a)
(b)
(c)

Construct the uncertainty principle for o403.
Evaluate op in the hydrogen state. Yy,

What can you cenclude about (xy) in this state?

4'3":]_T$I'ic:.h_c_)las: Wheeler, “Coincident Spectral Linés” (unpublished Reed College report, 2001).

A



194 Chapter 4 Quantum Mechanics in Three Dimensions

Problem 4.49 An electron is in the spin state

1-—2i
a()

(a) Determine the constant A by normalizing .

(b) If you measured S, on this electron, what values: could you get, and what s
the probability of each? What is the expectation value of S,?

(c) If you measured Sx on this: electron, what values could you get, and what is
the probability of each? What is the expectation value of $,.7

(d) If you measured Sy on this electron, what values could you get, and what is
the probability of each? What is the expectation value of $,,?

% % «Problem 4.50 Suppose two spin-1/2 particles are known to be inthe singlet config-
uration (Equation 4.178). Let S(l) be the component of the spin angular momentum
of particle number 1 in the direction defined by the unit vector 4. Similarly, let
S}() ) be the component of 2’5 angular momentum in the direction b. Show that

_ B? |
(5857 = =~ 0086, 4.198]

where 6 is the angle between & and b.

% % %xProblem 4.51

(a) Work out the Clebsch-Gordan coefficients for the case s; = 1/2, s, = any-
thing. Hint: You’re looking for the coefficients A and B in

fsmy = A} $)lsa om — 1)) + BIS (= D)sa m + 1)),

such that [sm) is an eigenstate of 2. Use the method of Equations 4.179
through 4.182. If you can’t figure out what Sy @ (for instance) dees to |s2 ma},
refer back to Equation 4.136 and the line before Equation 4.147. Answer:

A:\/szirn+1/2; Bzi\/sﬂszrl/za

250 + 1 250+ 1

where the signs are determined by s = s, +1/2.

(b} Check this general result against three or four entries in Table 4.8.
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Problem 4.52 Find the matrix representing S, for a particle of spin 3/2 (using, as
always, the basis of eigenstates of .S;). Solve the characteristic equation to determine
the eigenvalues of S .

* % xProblem 4.53 Work out the $pin matrices for arbitrary spin s, generalizing spin 1/2
(Equations 4.145 and 4.147), spin 1 (Problem 4.31), and spin 3/2 (Problem 4.52).

Answer:
g 0 0 0
0 s—1 0 0
SZ ] 0 0 s—2 0
0 0 0 —8
(o by 0 0 0 0 \
by 0 b,y 0 0 0
0 by 0 byo 0 0
s,=2|0 0 b O 0 0
21 .
0 0 0 0 S B
Ko 0 0 0 - by O )
[0 —ibs 0 0 0 0 }
iby, 0  —ibs_i 0 0 0
0 ib;_y 0 —iby_p - 0 0
s _"lo 0 b 0o .- 0 0
SN ) : .
0 0 0 0 0 —ib_gu
K 0 0 0 0 ib_s_;;l 0

where

bi=vG+ DG +1-)).

* % xProblem 4.54 Work out the normalization factor for the spherical harmonics, as
follows. From Section 4.1.2 we know that

Ylm _B ;z@ oime p{ﬂ. (cos 0);

the problem is to determine the factor B;" (which I guoted, but did not derive,
in Equation 4.32). Use Equations 4.120, 4.121, and 4.130 to obtain a recursion
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relation giving ]_'3mhLl in terms of :B/". Solve it by induction on 7 to get B/ up to
an overall constant c@). Finally, use the result of Problem 4.22 to fix the constant
You may find the followmg formula for the derivative of an associated Legendre
function useful:

apr . .
(1 —x% ’ =v1—x2P"" —mx PP [4.199]

Problem 4.55 The electron in a hydrogen atom occupies the combined spin and
position state. |
Ro1 (\/ Y1 X+ +v2/3 Y-IIX__) ‘

(a) If you measured the orbital angular momentum squared (L?), what values
might you get, and what is the probability of each?

(b) Same for the z component of orbital angular momentum (L.).

(c) Same for the spin angular momentum squared. (52).

(d) Same for the z component of spin angular momentur (S,).
Let J =1L + 8 be the total angular momentum.

(e) If you measured J2, what values might you get, and what is the probability
of each?

(f) Same for J;.

(g) If you measured the position of the particle, what is the probability density
for finding it at r, 8, ¢?

(h) Tf you measured both the z comporient of the spin and the distance from the
origin (note that these are compatible obseivables), what is the probability
density for finding the particle with spin up and at radius 7?

% % %Problem 4.56

(a) For a function f{(¢) that can be éxpand¢'d in a Taylor series, show that
F(@+ o) =Ll f(g)
(where ¢ is an arbitrary angle). For this reason, L. /A is called the gener-

ator of rotations about the z-axis. Hint: Use Equation 4.129, and refer to
Problem 3.39.
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More generally, L -7i/A is the generator of rotations about the direction 7, in
the sense that exp(iL - ig/A) effects a rotation through angle ¢ (in the right-
hand sense) about the axis 7. In the case of spin, the generator of rotations
is § - 7i/A. In particular, for spin 1/2

X’ — éi-(d-ﬁ-)w/Q- X [4.200]

tells us how spinors rotate.

(b) Construct the (2 x 2) matrix representing rotation by 180° about the x-axis,
and show that it converts “spin up” (4) into “spin down” (x_), as you
would expect.

(c) Construct the matrix representing rotation by 90° about the y-axis, and check
what it does to ..

(d) Construct the matrix representing rotation by 360° about the z-axis. If the
answer is not quite what you expected, discuss its implications.
(¢) Show that o
e @I — cos(p/2) + i (i - 0) sin(p/2). [4.201]

* %Problem 4.57 The fundamental commutation relations for angular momentum
(Equation 4.99) allow for half-integer (as well as integer) eigenvalues. But for
orbital angular momentum only the integer values occur. There must be some
extra constraint in the specific form L = ¥ x p that excludes half-integer values.**
Let a be some convenient constant with the dimensions of length (the Bohr radius,
say, if we’re talking about hydrogen), and define the operators

g1 ﬁ [X + (az/h)l?y_] ; p1= ﬁ [px = (B/a)y];

I

w=J5|x—@mp);  m=d5[pc+ Grady].

(a) Verify that [g1, 2] = [p1, p2] = 0; [g1, p1] = [q2, p2] = ih. Thus the
g’s and the p’s satisfy the canenical ¢ommutation relations for position and
momentum, and those of index 1 are compatible with those of index 2.

(b) Show that

TET g2ttt 2T gp L

44This problem is based on an argument in Ballentine (footnote. 26), page 127.
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(c) Check that L, = Hj — Hy, where each H is the Hamiltonian for a harmonic
oscillator with mass m = f/a® and frequency o = 1.

(d) We know that the eigenvalues of the harmonic oscillator Hamiltonian are.
(n+1/2)hw, where n =0, 1,2, ... (In the algebraic theory of Section 2.3.1
this.follows from the form of the Hamiltonian and thé canonical commutation
relations). Use this to conclude that the eigenvalues of L, must be integers.

Problem 4.58 Deduce the condition for minimum uncertainty in S, and S, (that
is, equality in the expression 5,05, > (1/2)/(S;)]), for a particle of spin 1/2 in
the generic state (Equation 4.139). Answer: With no loss of generality we can pick
a to be real; then the condition for minimum uncertainty is that b is either pure
real or else pure imaginary.

* % xProblem 4.59 In classical electrodynamics the force on a particle of charge g
moving with velocity v through electric and magnetic fields E and B is given by
the Lorentz force law:

F =q(E+vxB). [4.202]

‘This force cannot be expressed as the gradient of a scalar potential energy function,
and therefore the Schrodinger equation in its original form (Equation 1.1) cannot
accommodate it. But in the more sophisticated form

v N
ih-s - = HY [4.203]

there is no problem; the classical Hamiltonian® is i

1 .
H=—(p-qA) +q¢. [4.204]
2m
where A is the vector potential (B = V x A) and ¢ is 'the scalar potential (E =

—V@ — 3A/31), so the Schrodinger equation (making the canonical substitution
p — (A/1)V) becomes

A 1 /A 2
ih— — [— (Tv - gA) + qcp] v, [4.205]
ot 2m \ 1 A

438ee, for example, H. Goldstein, C. P. Poolc, and J. L. Safko, Classical Mechanics, 3rd ed.,
(Prentice Hall, Upper Saddle River, NJ, 2002), page 342,
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() Show that J ,
= (- g0 [4.206]

m

(b) As always (see Equation 1.32) we identify d{(r}/dt with (v). Show that

2
m%ﬁzﬂ =gq(E) + —q—((ﬁp. XB—B xp))— qé((_A x B)). [4.207]
't 2m. m

(¢) In particular, if the fields E and B are uniform over the volume of the wave
packet, show that
d{v) _ o o
m_dT =qE+ (v) XB), [4.208]
5o the expectation value of (v) moves according to the Lorentz force law, as
we would expect from Ehrenfest’s theorem.

# % *Problem 4.60 [Refer to. Problem 4.59 for background.] Suppose

By, . N :
A= -70'(_;:_] —yi), and ¢ = Kzz,.

where Bp and K aré constants.
(a) Find the fields E and B.
(b) Find the allowed energies, for a particle of mass 7 and charge g, in these
fields, Answer:

E(n,m) = (ny + %1;_-':_)71@1 +(na + DAy, (n1,mg =0,1,2,...), [4.209]

where w) = gBg/m and wy = /29K /m. Comment: If K = 0 this is the
quantum analog to ¢yclotron motion; ; is the classical cyclotron frequency,
and it’s a free particle in the z direction. The allowed energies, (] + %)h_wl_,
are called Landau Levels,*®

* *xProblem 4.61 [Refer to Problem 4.59 for backgronnd.] In classical electrodynam-
ics the potentials A and ¢ are not uniquely determined;*’ the physical quantities
are the fields, E and B.

46 For further discussion see Ballentine (footnote 26) Section 11.3.
473ee, for example, Griffiths (feotnole 30) Section 10.1,2.

EY
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(a)

Show that the potentials -

dA
P=p- . A=ALVA [4.210]
(where A is an arbitrary real function of position and time) yield the same
fields as ¢ and A. Equation 4.210 is called a gauge transformation, and the
theory is said to be gauge invariant.

In quantum mechanics the potentials play a more direct role, and it is of
interest to know whether the theory femains gauge invariant. Show that

satisfies the Schrodinger equation (4.205) with the gauge-transformed poten-
tials ¢’ and A’, Since W’/ d1tfe19 from W only by a phase factor, it represents
the same physical state,*® and the theory is gauge invariant (see Section
10.2.3 for further discussion).

48That is to say, (r), d{r}/dzt, etc. are unchanged Because A depends on position, (p) (with p

represented by the operator (7/1)V) does change, but as we found: in Equation 4.206, p does not
represent the mechanical momenium (mv) in this context (in lagrangian mechanics it is ‘so-called
canonical momentum),



CHAPTER 5

IDENTICAL PARTICLES

5.1 TWO-PARTICLE SYSTEMS

For a single partic]e, W(r, ) is a function of the spatial coordinates, r, and the
time, ¢ (we'll ignore spin, for the moment). The state of a rwo-particle system is
a function of the coordinates of particle one (ry), the coordinates of particle two
(ry), and the time:

W (ry, r, £). [5.1]
Its tifne evolution is determined (as always) by the Schrddinger equation:

LoV

h— — HW, ' 5.2
ih— _ [5.2]

where H is the Hamiltonian for the whole system:
H n? % i Vs + V¢ ) [5.3]
= V?___ v r. Ty, ¢ 5.2
.'_2?’11] 1 2ma 2 1: %258

(the subscript on V indicates differentiation with respect to the coordinates of
particle 1 or particle 2, as the case may be), The statistical interpretation carries
over in the obvious way:

(W (., 1)[* dory dPry [5.4]

is the probability of finding particle 1 in the volume d®ri and particle 2 in the
volume d°r;; evidently ¥ must be normalized in such a way that

f W (r1, 12, 1) > dPry dPry = 1. [5.5]

201
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For time-independent potentials, we obtain a complete set of solutions by
separation of variables:

W(ry, v, £) = (g, ro)e B, 15.6]

where the spatial wave function () satisfies the time-independent Schrédinger
equation:

o, n o,
o ViV 5 Vi VY = B, [5.7]

and E is the total energy of the system.

s *Problem 5.1 Typically, the interaction potential depends only on the vector r =

ri —r, between the two particles. In that case the Schrédinger equation separates,
if we change variables from r;, ry to r and R = (mr| + mary)/(m| + my) (the

center of mass).

(a) Show thatr; =R + (u/m1)¥, 1y = R — (u/my)r, and Vi = (u/m2)Vg +
Vi, V2 = (t4/m1)Vg — V;., where
mimio
mi -+ m

e [5.8]

is the re_duced mass of the system.

(b) Show that the (time-independent) Schrédinger equation becomes

vty -y s vew - By
2(m1 +my) X 2w 7T T T
(c) Separate the variables, letting ¥ (R, r) = ¥z (R)y (r). Note that ¥z satisfies
the one-particle Schrodinger equation, with the fotal mass (m; + my2) in
place of m, potential zero, and energy Eg, while 1, satisfies the one-particle
Schrodinger equation with the reduced mass in place of m, potential V (r),
and energy E,. The total energy is the sum: E = Ep + E,. What this tells us
is that the center of mass moves like a free particle, and the relative motion
(that is, the motion of particle 2 with respect to particle 1) is the same as if
‘we had a single particle with the reduced mass, subject to the potential V.
Exactly the same decomiposition occurs in classical mechanics;' it reduces
the two-body problem to an equivalent one-body problem.

1 See, for example, Jerty B. Marion and Stephen T. Thornton, Classical Dynamics of Particles
and Systems, 4th ed., Saunders, Fort Worth, TX (1995), Section 8.2.
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Problem 5.2 In view of Problem 5.1, we can correct for the motion of the nucleus
in hydrogen by simply replacing the electron mass with the reduced mass.

(a) Find (to two significant digits) the percent error in the binding energy of
hydrogen (Equation 4.77) introduced by our use of m instead of u.

(b) Find the separation in wavelength between the red Balmer lines (n = 3 —
n = 2) for hydrogen and deuterium.

(c) Find the binding energy of positroninm (in which the proton is replaced by
a positron—positrons have the same mass as electrons, but opposite charge).

(d) Suppose you wanted to confirm the existence of muonic hydrogen, in which
the electron is replaced by a-muon (same charge, but 206.77 times heavier).
Where (i.e., at ' what wavelength) would you look for the “Lyman-a” line
m=2—>n=1)7

Problem 5.3 Chlorine has two naturally occurring isotopes, C1°° and CI37. Show
that the vibrational spectrum of HCI should consist of closely spaced doublets, with
a splitting given by Av = 7.51 x 10~*p, where v is the frequency of the emitted
photon. Hint: Think of it as a harmonic oscillator, with @ = /k/it, where. [ is
the reduced mass (Equation 5.8) and & is presumably the same for both isotopes.

5.1.1 Bosons and Fermions

Suppose particle 1 is in the (one-particle) state v, (r), and particle 2 is in the state
¥ (). (Remember: I'm ignoring spin, for the moment.) In that case ¥ (ry, r2) is a
simple product:?

Py, Tp) = Yrg (i)Y (12). [5.9]

Of course, this assumes that we can tell the particlés apart—otherwise it wouldn’t
make any sense to claim that number 1 i§ in state v, and number 2 is in state V;
all we could say is that one of them is in the state v, and the other is in state v,
but we wouldn’t know which is which. If we were. talking classical mechanics this
would be a silly objection: You can always tell the particles apart, in principle—just

2t is emphatically rot true, hal every two-particle wave function is a product of two one-particle
wave functions. There exist so-called entangled states that cannor be decomposed this way. However:
If particle 1 is in state @ and particle 2 is in state b, then the two-particle state is a product. I know
what you’re thinking: “How could patticle 1 not. be in some state, and particle 2 in some other state?”
The classic example i thie singlet: spint configuration (Equation 4.178)—1 can’t tell you the state of
particle 1 by itsell; bécause it is “entangled” (Schrodinger’s lovely word) with the state of particle 2.
If 2 is measured, and found to be spin upa then 1 is spin dows, but if 2 is spin dowsi, then 1 is Spin up.
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paint one of them red ‘and the othei one blug, or stamp identification numbers on
them, or hire private detectives to follow them around. But in quantum mechanics
the situation is fundamentally different: You can’t paint an electron ted, or pin a
label on it, and a detective’s observations will inevitably and unpredictably alter
its state, raising doubts as to whether the two had perhaps switched places. The
fact is, all electrons are utterly identical, in a way that no two classical objects can
ever be. It’s not just that we don’t happen to know which electron is which; God
doesn’t know which is which, because there is no such thing as “this” electron, or

“that”” electron; all we can legitimately speak about is “an” electron,

Quantum mechanics neatly accommodates the existence of particles that are
indistinguishable in principle: We simply construct a wave function that is non-
commiittal as. to which particle is in which state, There are actually two ways. to

do it:.

¥i (e, 12) = AW Vs() + i )Y )], [5.10]

Thus the theory admits two kinds of identical particles: bosons, for which we use

" the plus sign, and fermions, for which we use the minus sign. Photons and mesons
-are bosons; protons and electrons are fermions. It so happens that

{ all particles with integer spin are bosons, and (5.11]

all particles with half integer spin are fermions.

This connection between spin and statistics (as we shall see, bosons and fermions.
have quite different statistical properties) can be proved in relativistic quantum
mechanics; in the nonrelativistic theor-y it is taken as an axiom.’

It follows, in particular, that two identical fermions (for example, two elec-
trons) cannot occupy the same state. For if ¥y = v, then

Yo (11, 12) = Ay, (1) Ya(rs) — Ya (r)¥a(r2)] =0,

and we are left.with no wave function at all.* This is the famous Pauli exclusion
principle. It is not (as you may have been led to believe) a weird ad hoc assumption
applying only to electrons, but rather a consequence of the rules for constructing
two-particle wave functions, applying-to all identical fermions.

I assumed, for the sake of argument, that one particle was in the state ¥,
and the other in state. ¥, but there is a more general (and more sophisticated)

31t seems bizarre that relativity should have anything to do with it, anid there has been a lot
of discussion recently as to whether it might be possible to prové the spin-statistics connection in
other (snnpler) ways. See, for example, Robert C. Hilborn, Am. J. Phys. 63, 298 (1995); Tan Duck and
E. C. G. Sudarshan, Pauli and the Spin-Statistics Theorem, World Sc1entlﬁc Singapore (1997).

m still leaving out the spin, don’t forget—if this bothers you (alter all, a spmlesa fermion
is a contradiction in terms), assume they’re in the same spin state. I'll incorporate spin explicitly in a
mornent.
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way to formulate the problem. Let us define the exchange operator, P, which
interchanges the two particles:

Pf(r1,r2) = f(r2,11). [5.12]

Clearly, P? = 1, and it follows (prove it for yourself) that the eigenvalues of P are
1 1. Now, if the two particles are identical, the Hamiltonian must treat them the
samie: m] = my and V(ry, ry) = V(ry, r1). It follows that P and H are compatible
observables,

[P,H] =0, [5.13]

and hence we can find a complete set of furnctions that are simultaneous eigenstates
of both. That is to say, we can find solutions to the Schrédinger equation that
are either symmetric (eigenvalue +1) or antisymmetiic (eigenvalue —1) under
exchange:

VY (ry, r2) = T (r, ry). [5.14]

Moreover, if a system starts out in such a state, it will remain in such a state. The
new law (I'll call it the symmetrization requirement) is that for identical particles
the wave function is not merely allowed, but required to satisfy Equation 5.14,
with the plus sign for bosons, and the minus sign for fermions. This is the general
statement, of which Equation 5.10 is a special case.

Example 5.1 Suppose we have two noninteracting—they pass right through one
another ... never mind how you would set this up in practice! —particles, both of
mass m, in the infinite square well (Section 2.2). The one-particle states are

Yn(x) = [ sin (%x) , E,=n°K

(where K = ﬂzhz / ;2ma2, for convenience). If the particles are distinguishable, with
#1 in state ny and #2 in state n», the composite wave function is a simple product:

Yn iy (%1, x2) = Vn, (Xﬂ‘ﬁm (x2),  Epmy = (n% + n%) K.

It is somctimes suggested that the symmetrization requirement (Bquation S.14) is forced by
the fact that P and H ¢ommute. This. is false: It is perfectly possible 1o imagine a system of two
dzstznguzshable particles (sdy, an eléctron and'a posiiron) for which the Hamiltonian is symmetric, and
yet there is no requirement that the: wave function be symmetric (or antisymmetric). But idenfical
particles have to. occupy symmetric or antisymmetric states, and this is a completely new fundamental
law —on a par, logically, with Schrédinger’s equation and the statistical interpretation. Of course, there
didn’t. have to be any such things as identical particles; it could have been that every single particle
in nature was distinguishable from every other one. Quantum mechanics allows for the possibiliry of
identical particles, and nature (being lazy) seized the opportunity. (But 'm not complaining—this
makes matters enormously sitapler!)

a
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For example, the ground state is  »
2, ,
Yri1 = — sin(wwxy/a) sin{mxz/a), Er = 2K;
a
the first excited state is doubly. degenerate:

2 _ _
Y= P sin(zwxy/a)sinQexy/a), E»=35K,
a _

2 _
¥ :_'E sin(2rxy/a) sin(mwxz/a), Eyn =5K;

and.so on. If the two particles are identical bosons, the ground state is unchanged,.
but the first excited state is nondegenerate:

_a% [s,__in(zle /a) sin2m xa/a) + sin(2wxi/a) sin(zrx_ig../a)]

(still with energy 5K). And if the particles are identical fermions; there is no state
with energy 2K; the ground state is

72 [sin(rx1 /a) sin(2m x2/@) —sin2m 1 /a) sin(rxa/a)]

and ifs energy is 5K.

*Problem 5.4
(a) If ¥, and v are orthogonal, and both normalized, what is the constant A in
Equation 5.10?

(b) If ¥, = 9 (and it is normalized), what is A? (This case, of course, occurs
only for hosons.)

Problem 5.5

(a) Write down the Hamiltonian for two fioninteracting identical particles in the
infinite square well. Verify that the fermion ground state given in Example 5.1
is an eigenfunetion of H, with the appropriate eigenvalue.

(b) Find the next two excited states (beyond the ones in Example 5.1)—wave
functions and energies——for each of the three cases (distinguishable, identical
bosons, identical fermions).
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5.1.2 Exchange Forces

To give you some sense of what the symmetrization requirement actually does, 'm
going to work out-a simple one-dimensional example. Suppose one particle is in
state: ¥, (x), and the other is in state ¥ (x), and these two states are orthogonal
and normalized. If the two particles are distinguishable, and number 1 is the one
in state 1, then the combined wave function is

W(x1, x2) = Yy, (JC1) ¥ (x2)a [5.15]

if they are identical bosons, the composite wave function is (see Problem 5.4 for
the normalization)

Ve (x1, x2) = %w O (x2) + ¥ (1) Ve ()] [5.16]

and if they are identical fermions, it is

W (erx2) = %w (o)W (x2) — Wi (o)W (o)1, [5.17]

Let’s calculate the expectation value of the square of the separation distance:
between the two particles,

(Ge1 = x2)?) = (x7) + (55) — 2(xix2). [5.18]
Case 1: Distinguishable particles. For the wavefunction in Equation 5.15,
(x1) = f alen dn f [ () * dxz = (%)
(the expectation value of x? in the one-particle state v,), |

(2) = f WG dxt f Sl dxy = (),

{xix2) = f x1 W () ? dxy f X2l Wp(x2) P dxy = (x)a(x)p.
In this case, then,
((x1 — x22)%)a = (62 + (22 — 2(0)a (X)p. [5.19]

(Incidentally, the answer would, of course, be the same if particle 1 had been in
state V¥, and particle 2 in state ¥,.)
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Case 2: Identical particles. For the wave functions in Equations 5.16 and 5.17,

) 1 ) ") [ . )
{x) = 5 [ f -x%lwqi(xl_)l“.dxl f |y (x2)|” dx2

+ f 2y (o)1 dxy f 1Y (x2) |2 dxa

T f X3P (0 ) g (1) dxy f Wa-(Xz)*wb(xz)'dxz]

= L ey 02 0] = 1 (1 + ().
Similarly,

oy = 5 (6 + ).

(Naturally, (x2) = {x2), since you can’t tell them apart.) But
) = 3 [ syl dnn [yl dx
+ [ xR an [yt
+ [avatn e dn [ v vt dr

T f-xr\fﬁ-b(’x1')'*%.(-x_1)dx1 fxzwa(xz)*wb(xz) d-xz]

1,. _ _ . .
= 5-((x)a(x)-b + (X)p{x)a T (x)ab {X)ba T {(X}ba ('x_)ab.)

= (XaX)p T (x)apl?,
where _
¥y = f XU () Yip (x) . [5.20]
Evidently
(1 —x2)%) 1 = P)a + (2 — 20)a (%) F 210)an |- [5.21]
Comparing Equations 5.19 and 5.21, we see that the difference resides in the

final term: _ _
(A4 = ((An%)a F 20w [5.22]
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F + + F~

(b)

FIGURE 5.1: Schematic picture of the covalent bond: (a) Symmetric configuration
produces attractive force. (b) Antisymmetric configuration produces repulsive force.

Identical bosons (the upper signs) tend to be somewhat closer together, and identical
fermions (the lower Sig:ns:_) somewhat farther apart, than distinguishable particles
in the same two states. Notice that (x)q vanishes unless the two wave func-
tions actually overlap [if ¥, (x) is Zero wherever Vy(x) is nonzero, the integral
in Equation 5.20 is zero]. So if i, represents an electron in an atom in Chicago,
and 1, represents an electron in an atom in Seattle, it’s not going to make any
difference whether you antisymmetrize the wave function or not. As a practical
matter, therefore, it’s okay to pretend that electrons with nonoverlapping wave
functions, are distinguishable. (Indeed, this is the only thing that allows physicists
and chemists to proceed at all, for in principle cve-ryele‘étron in the universe is
linked te every other one, via the antisymumetrization of their wave functions, and
if this really mattered, you wouldn’t be able to talk about any.one unless you were
prepared to deal with them all!)

The interesting case is when there is some overlap of the wave functions.
The system behaves as-though there were a “foree of attraction” between identical
bosons, pulling them closer together, and a “force of repulsion” between identi-
cal fermions, pushing them apart (remermbér that we are for the moment ignoring
spin). We call it an exchange force, although it’s not really a force at all—no
‘physical agency is pushing on the particles; rather, it is a purely geometrical conse-
quence of the symmetrization requirement. It is also a strictly quantum miechanical
phenomenon, with no classical counterpart. Nevertheless, it. has profound conse-
quences. Consider, for example, the hydrogen molecule (Hy). Roughly speaking,
‘the ground state consists of one electron in the atomic ground state (Equation 4,80)
centered on nucleus 1, and one electron in the at.(_)'mic ground state: centered at
nucleus 2. If electrons were bosons, the symmetrization requirement (or, if you
like, the “exchange force”) would tend to concentrate the eléctrons toward the
middle, between the two protons. (Figure 5.1(a)), and the resulting accumulation
of negative charge would attract the protons inward, accounting for the covalent
bond.® Unfortunately, electrons aren’t bosons, they’re fermions, and this means
that ‘the concentration of negative charge should actually be shifted to the wings
(Figure 5.1(b)), tearing the molecule apart!

A covalent bond occurs when shared eleetrons eorigregate between the nuclei, pulling the atoms
together, It need not involve two- electrons—in Section 7.3 we'll encounter a. covalent bond with just
one electron.
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5.2 ATOMS

But wait! We have been ignering spin. The coriplete state of the electron
includes not enly its position wave function, but also a spinor, describing the
orientation of its spin:’

Y (r)x (s): [5.23]

When we put together the two-electron state, it is the whole works, not just the
spatial part, that has to be antisymmetiic with respect to €xchange. Now, a glance
back at the-composite. spin states (Equations 4.177 and 4.178) reveals that the singlet
combination is antisymmetric (and hence would have to be joined with a symmetric
spatial function), whereas the three triplet states are all symmetric (and would require
an antisymmetric spatial function). Evidently, then, the singlet state should Tead to
bonding, and the triplet to antibonding, Sure enough, the chemists tell us that covalent
bonding requires the two eléctrons to oceupy the siniglet state, with total spin zero.

*Problem 5.6 Imagine two noninteracting particles, ¢éach of mass m, in the infinite
_square well. If one is in the state 1, (Equation 2.28), and the other in state
(I # n), calculate {(x; — x2)?), assuming (a) they are distinguishable particles,
(b) they are identical bosons, and (c) they are identical fermions.

Problem 5.7 Suppose you had three. particles, one in state 1/, (x), one in state
¥y (x), and one in state ¥ (x). Assuming ¥,, ¥, and v are orthonormal, construct
the three-particle states (analogous to Equations 5.15, 5.16, and 5.17) representing
(a) distinguishable particles, (b) identical bosons, and (c) identical fermions. Keep
in mind that (b) must be completely symmetric, under interchange of any pair of
particles, and (¢) must be completely antisymmetric, in the same sense. Comment.
There’s a cute trick for constructing completely antisymmetric wave functions:
Form the Slater determinant, whose first row is Wa(X1), Yu(x1), Yelxi), etc.,
whese second row is ¥, (x2), ¥ (x2), ¥:(x2), etc., and so on (this device works
for any number of particles).

A neutral atorm, of atomic number Z, consists of @ heavy nucleus, with electric
charge Ze, surrounded by Z electrons (mass m and charge —e). The Hamiltonian

7In the absence of coupling between spin and position, we are- free to assurne that the state is-
separable in its .spin and spatial coordinates. This just says that the probability of getting spin up. is.
independent of the location of the particle. In the presence of coupling, the general state would take
the form of a linear combination: ¥4 (r) x4+ + ¥— () x—, as in Problem 4.55.

81n casial langudge; it is often said that the. electrons are “oppositely aligned” (one with spin
up, and the other with spin down). This is something of an oversimplification, since. the. same ¢ould be:
said of the-m = 0 triplet state. The precise statement is that they are in the singlet configuration.
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for this system is’

_ S | Ze? _
H = 2 ‘ V2 — - E 5.24]
Zm J (_4316()) Fj (4neo> lrj - rk[ [ 1

The term in curly brackets represents the kinetic plus potential energy of the jth
electron, in the electric field of the nucleus; the second sum (which runs over
all values of j and k except j = k) is the potential energy associated with the
mutual repulsion of the electrons (the factor of 1/2 in frost corrects for the fact
that the summation counts -each pair twice). The problem is to solve Schrodinger’s
equation,

HY = Ev, [5.25]

for the wave func‘tio‘n Y (ry, ra,. .. ,rz). Because electrons are identical fermions,
however, not all solutions are acceptable: only those for which the complete state
(position and spin),

WL, TZ)X (5182, 1 52) [5:26]

is antisymmetric with respect to interchange of any two electrons. In particular, no
two electrons can occupy the same state,

Unfortunately, the Schrédinger equation with Hamiltonian in Equation 5.24
cannot be solved exactly (at any rate, it hasn’t been), except for the very simplest
case, Z = 1 (hydrogen). In practice, one must resort to elaborate approximation
methods. Some of these we shall explore in Part IT; for now I plan only to sketch
some qualitative features of the solutions, obtained by neglecting the electron repul-
sion term altogether. In Section 5.2.1 we’ll study the. ground state and excited states
of helium, and in Section 5.2.2 we’ll examine the ground states of higher atoms.

Problem 5.8 Suppose you could find a solution (y(ry, I3, ..., ¥z)) to the Schro-
dinger equation (Equation 5.25), for the Hamiltonian in Equation 5.24. Describe
how you would construct from it a completely symmetric function and a completely
antisymmetric function, which also satisfy the Schrodinger equation, with the same
energy.

'm assuming the nucleus is stationary. The tiick of accounting for auclear motion by using the
reduced rhass (Problem 5.1) works only for the fwo- body problem; {ortunately, the nucleus 1s so much
inore massive than the electrons that the correction is extremely small even in the case of hydrogen
(se¢ Problem 5.2(a)), and it is smaller still for the heavier atoms. There are more interesting effects,
duc to magnetic inleractions associated with electron spin, relativistic. corrections; and the finite size of
the nuelens. We’ll look into these in later chapters, but all of them are minute cortections to the “purely
conlombie” dtom described by Equation 5.24.

kY
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5.2.1 Helium '

After hydrogen, the simplest atom is helium (Z = 2). The Hamiltonian,

] 2,1 2 K2 1 262 1 & |
H=1___v?_ _ J - vio : ., [5.27
{ om dey 1| }+= Im 2 dreg 1 +47?;.€0 [ri — ra| [ !

consists of two hydrogenic Hamiltonians (with nuclear charge 2¢), one for electron
1 and one for electron 2, together with a final term describing the repulsion of the
two electrons. It is this last term that causes all the trouble. If we simply ignore it,
the Schrodinger equation separates, and the solutions can be written as products of
hydrogen wave functions;

VL, £2) = Bt OCD Vi (62), [5.28]

only with half the Bohr radius (Equation 4.72), and four times the Bohr energies
(Equation 4.70)—if you don’t see why, refer back to Problem 4.16. The total
energy would be

E =4(E, -+ Ey), [5.29]

where E, = —13.6/71'2 eV. In particular, the ground state would be

. - 8 ., |
Yo(r1, 1) = Yioa(r)pioo(es) = —ge 2L, [5.30]

(see Equation 4.80), and its energy would be
Ep = 8(—13.6 eV) = —109 eV. [5.31]

Because 1 is a symmetric function, the spin state has to be antisymmetric, so the
ground state of helium should be a singlet configuration, with the spins “oppo-
sitely aligned.” The actual ground state of helium is indeed a singlet, but the
experimentally determined energy is —78.975 eV, so the agreement is not very
good. But this is hardly surprising: We ignored electron repulsion, which is cer- |
tainly not a small contribution. It is clearly positive (see Equation 5.27), whichis |
comforting—evidently it brings the total energy up from —109 to —79 eV (see
Problem 5.11).

The excited states of helinm consist of one electron in the hydrogenic ground
state, and the other in an excited state:

Vnirm \0100 . [5 32]

[If you try to put both electrons in excited states, one imnmediately drops to the
ground state, releasing enough energy to knock the other one into the contin-
wum (E > 0), leaving you with a helium ion (He™) and a free electron. This
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is an interesting system in its own right—see Problem 5.9—but it is not our
present concern.] We can construct both symrmetric and antisymmetric combina-
tions, in the usual way (Equation 5.10); the former go with the antisymmetric spin
configuration (the singlet), and they are called parahelium, while the latter require
a symmetric spin configuration (the triplet), and they are known as orthohelium,
The ground state is necessarily parahélium; the éxcited statés come in both forms.
Because the symimetric spatial state brings the electrons closer together (as we dis-
covered in Section 5.1.2), we expect a higher interaction energy in parahelium, and
indeed, it i1s experimentally confirmed that the parahelium states have somewhat
higher energy than their orthohelium counterparts (see Figure 5.2).

Parahelium Orthohelium _
is P 'p 'F 8 3p 8p OF
0 _
sl 4P+ 4D+ 4F 4P+ +
4 | 48 _ 45l 4 4D+ 4F
8P+ 3D~ pl 3D+
35+ 3P
_ 38+
2
=
2
5 -3f
_gc,-,_ |
5 2P+
opl
4 281
2.8_..
(1S at —24.5eV)

FIGURE 5.2: Energy level diagram for helium (the notation is explained in
Section 5.2.2). Note that parahelium energies are uniformly higher than their orthohe-
lium counterparts. The numierical values on the vertical scale are relative to the ground
state of ionized helium (Het): 4 x (—13.6) eV = —54.4 €V; to get the total enérgy of
the state, subtract 54.4 e¢V..
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Problem 5.9

(a) Suppose you put both electrons in a helium atom into the #n = 2 state; what
would the energy of the emitted electron be?

(b) Describe (quantitatively) the spectrum of the helium ion, He™,

Problem 5.10 Discuss (qualitatively) the energy level scheme for helium if
(a) electrons were identical bosons, and (b) if electrons were distinguishable patti-
cles (but with the same mass and charge). Pretend these “electrons” still have spin
1/2, so the spin configurations are the singlet and the triplet.

s*Problem 5.11

(a) Calculate ((1/|¥; — r3)) for the state v (Equation 5.30). Hint: Do the d°r
integral first, using spherical coordinates, and setting the polar axis along ry,
s0 that

Xy — 1| = 7‘12 + r% — 2F17; COS B;.

The 0 integral is easy, but be careful to take the positive root. You'll have
to break the 7, integral into two pieces, one ranging from 0 to r1, the other
from r; to co. Answer: 5/4a.

(b) Use your result in (a) to estimate the electron interaction energy in the
ground state of helium. Express your answer in electron volts, and add it
to Eg (Equation 5.31) to get a corrected estimate of the ground state energy.
Compare the experimental value. (Of course, we’re still working with an
approximate wave function, so don’t expect perfect agreement.) j

5.2.2 The Periodic Table

The ground state electron configurations for heavier atoms can be pieced together in
much the same way. To first approximation (ignoring their mutual repulsion alto-
gether), the: individual electrons occupy one-particle hydrogenic states (n, [, m),
called orbitals, in the Coulomb potential of a nucleus with charge Ze. If elec-
trons were bosons (or distinguishable particles) they would all shake down to the
ground state (1, 0, 0), and chemistry would be very -dull indeed. But electrons are
in fact identical fermions, subject to the Pauli exclusion pnnc1ple so only two
can occupy any given orbital (one with spin up, and one with spin down—or,
more precisely, in the singlet configuration). There are n? hydrogenic wave func-
tions (all with the same energy E,) for a given value of n, so the n = 1 shell
has room for 2 electrons, the. n = 2 shell holds 8, n» = 3 takes 18, and in gen-
eral the nth shell can accommodate 2n? electrons. Quahlatlve]y, the horizontal
rows on the Periodic Table correspond to filling out each shell (if this were the.
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whole. story, they would have lengths 2, 8, 18, 32, 50, etc., instead of 2, 8, 8,
18, 18, etc.; we’ll see in a moment how the electron-glectron repulsion throws the
counting off). '

With helium, the » = 1 shell is filled, so the next atom, lithium (Z = 3), has
to. put one electron inte the: # = 2 shell. Now, for n = 2 we can have / = 0 or
I = 1: which of these will the third electron choose? In the absence of electron-
electron interactions, they both have the same energy (the Bohr energies depend
on n, remember, but not on ). But the effect of electron repulsion is to favor the
lowest value of [, for the following reason. Angular momentum tends to throw
the electron outward, and the farther out it gets, the miore effectively the inner
electrons screen the nucleus (roughly speaking, the innermost electron “sees” the
full nuclear charge. Ze, but the outermost electron sees an effective charge hardly
greater than ). Within a given shell, therefore, the state with lowest energy (which
is to say, the most tightly bound electron) is I = 0, and the energy increases with
increasing [, Thus the third electron in lithium occupies the orbital (2, 0, 0). The
next atom (beryllium, with Z = 4) also fits into this state (only with “opposite
spin”), but boron (Z = 5) has to make use -of [ = 1.

Continuing in this way, we reach neon (Z = 10), at which point the n = 2
shell is filled, and we advance to the next row of the periodic table and begin to
populate the n = 3 shell. First there are two atoms (sodium and magnesium) with
[ = 0, and then there are six with [ = 1 (aluminum through argon). Following
argon there “should” be 1{) atoms with » = 3 and / = 2; however, by this time the
‘screening effect is so strong that it overlaps the next shell, so potassium (Z = 19)
and calcium (Z = 20) choose n = 4, ] = 0, in preference to n = 3, [ = 2. After
that we drop back to pick up the n = 3, [ = 2 stragglers (scandium through zinc),
followed by n = 4,1 = 1 (gallium through krypton), at which point we again make
a premature jump to the next row (n = 5), and wait until later to slip in the [ =2
and / = 3 orbitals from the n = 4 shell. For details of this intricate counteipoint I
refer you to any book on atomic physics.'° :

I would be delinquent if I failed to mention the archaic nomenclature for
atomic states, because all chemists and most physicists. use it (and the people who
make up the Graduate Record Exam love this kind of thing). For reasons known
best to nineteenth century spectroscopists, [ = 0 is called s (for “sharp”),/ = 1is p
(for “principal”™), [ = 2 is d (“diffuse™), and ] = 3 is f (“fundamental”); after that I
guess they ran out of imagination, becanse it now continues alphabetically (g, A, 1,
but skip j—just to be utterly perverse, k, 1, etc.).!! The state of a particular electron
is represented by the pair nf, with n (the number) giving the shell, and / (the letter)

10 See, for example, U. Fano and L. Fano, Basic Physics of Atoms and Molecules, Wiley, New
York (1959), Chapter 18, or the-classic by G. Hetzberg, Afomic Spectra and Atomic Siricture, Dover,
New York (1944). ' '

11Thc shells themselves are assigned cqually arbitrary. nicknames, starling (don’t ask m¢ why)
wilh K: The K shell is 2 = I, the L shell is n = 2, M is # = 3, and so on (al least they're in
alphabetical order).
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specifying the orbital angular momentum; the magneétic quantum number »7 is not
listed, but an exponent is used to indicate the numiber of electrons that occupy the
state in quéstion. Thus the configuration

(15)%(2s)*(2p)? [5.33]

tells us that there are two electrons in the orbital (1, 0. 0), two in the orbital (2, 0, 0),
and two in some combination of the orbitals (2, 1, 1), (2, 1, 0), and (2, 1, —1). This
happens to be the ground state of carbon. '

In that example there are two electrons with orbital angular momentum quan-
tum number 1, so the total orbital angular momeéntum quantum number, L (capital
L, instead of I, to indicate that this pertains to the fotal, not to any one particle)
could be 2, 1, or 0. Meanwhile, the two (1) electrons are locked together in the
singlet state, with total spin zero, and so are the two (2s) electrons, but the two
(2p) electrons could be in the singlet configuration or the triplet configuration. So
the toral spin quantum number S (capital, again, because it’s the fotal) could be 1
-or 0. Evidently the grand total (orbital plus spin), J, could be 3, 2, 1, or 0. There
exist rituals, known as Hund’s Rules (see Problem 5.13) for figuring out what
these totals will be, for a particular atom. The result is recorded as the following
Thieroglyphic:

P, [5.34]

(where S and J are the mumbers, and L the letter—capitalized, this time, because
we’re. talking about the fofals). The ground state of carbon happens to be 3 py:
the total spiin. is 1 (hence the 3), the total orbital angular momentum is 1 (hence
the P), and the grand total angular momentum. is zero (hence the 0). In Table 5.1
the individual configurations and the total angular momenta (in the notation of
Equation 5.34) are listed, for the first four rows of the Periodic Table.'?

«Problem §.12

(a) Figure out the electron configurations (in the notation of Equation 5.33) for
the first two rows of ‘the Periodic Table (up to neon), and check your results
against Table 5.1.

(b) Figure out the corresponding total angular momenta, in the notation of Equa-

tion 5.34, for the first four elements. List all the possibilities for beron, car-
bon, and nitrogen.

(2 After: krypton—¢lemerit 36—the: situation gets-more complicated (fine structure starts to play
a significant role in the ordering ol the states) so it is nol for wanl ol space that the table terminates
there.
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TABLE 5.1:  Ground state electron configu-
rations for the first four rows of the Periodic

Table.

N

Element

H
He

Configuration

(1s)
(15)?

T1
Be

(He)(25)
(He)(2s)*

=R - N R O g N

[
o

)

(He)(2s)*(2p)
(He)(25)2(2p)?
(He)(2s)*(2p)*
(He)(25)%(2p)*
(He)(25)*2py°
(He)(25)*(2p)®

[
N —

ZZ'™TQ0oZOw

a

(Ne)(3s)
(Ne)(3s)?

% 9B W

Al
Si

(/5]

Cl
Ar

(Ne)(3s)%(3p)

(Ne)(3s)2(3p)?
(Ne)(3s)*(3p)>
(Ne)(35)*(3p)*
(Ne)(35)%(3p)°
(Ne)(35)°(3p)°

_
8o

Ca

(Ar)(4s)
(Ar)(45)?

W R B RN KR NN
S WO Al Ph WN R~

Sc
Ti

Cr
Fe
Co
Cu
7Zn

(AD(5)2(3d)
(Ar)(@4s5)%(3d )?
(AD)45)%(3d )}
(An)(ds)(3d
(AD(4s)2(3d )
(AD@s)%(3d )
(An@s)*(3d)’
(Ar)(4s5)2(3d )
(An)(4s)(3d)10
(An)(4s)*(3d)'°

WL W LW W
R LN~

"3
Al

Ga
Ge

Se
Br

(Ar)(4s)*(3d) 'Y (4p)

(Ar)(ds)>(3d)9(4py*
(An)(45)*(3d)'%(4p)?
(A)(4s)%(3d)0(4p)*
(Ar)(4s)*(3d)'0(4p)>
(An)(4s)°(3d)104p)®
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% «Problem 5.13

(a) Hund’s first rule says that, consistent with the Pauli principle, the state with
the highest total spin (§) will have the lowest energy. What would this predict
in the case of ‘the excited states of helium?

(b) Hund’s second rule says that, for a given spin, the state with the highest total
orbital -angular momentum (L), consistent with overall ‘antisymmietrization,
will have the lowest energy. Why doesn’t carbon have L = 27 Hint: Note
that the “top of the ladder™ (M7, = L) is symmetric.

(c) Hund’s third rule says that if a subshell (n, [) is no more than half filled,
then the lowest energy level has J = |L —S/; if it is more than half filled, then
J = L 4 S has the lowest energy. Use this to resolve the boron ambiguity
in Problem 5.12(b).

" (d) Use Hund’s rules, together with the fact that a symmetric spin state must go
with an 'a:nt:i-symmetr'ic position state (and vice versa) to resolye the carbon
and nitrogen ambiguities in Problem 5.12(b). Hint: Always go to the “top of
the ladder” to figure out the symmetry of a state. | |

Problem 5.14 The ground state of dysprosium (element. 66, in the 6th row of the
Periodic Table) is listed as ° Iy. What are the total spin, total orbital, and grand total
angular momentum quantum numbers? Suggest a likély electron configuration for
dysprosium.

5.3 SOLIDS

In the solid state, a few of the loosely bound outérmost valenee electrons in each
atom become detached, and ream around throughout the material, no longer subject
only to the. Coulomb field of a specific “parent’” nucleus, but.rather to the combined
potential of the entire crystal Jattice. In this section we will examine two extremely
primitive models: first, the electron gas theory of Sommerfeld, which igneres all
forces (except the confining boundaries), treating the wandering electrons as free
particles in a box (the three-dimensional analog to an infinite square well); and
second, Bloch’s theory, which introduces a periodi¢ potential representing the elec-
trical attraction of the regularly spaced, positively charged, nuclei (but still ighores:
electron-electron repulsion). These models are no more than the first halting steps
toward a gunantum theory of solids, but already they reveal the critical role of j
‘the Pauli exclusion principle in accounting for “solidity,” and provide illuminating 3
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insight into the remarkable electrical properties of conductors, semi-conductors,
and insulators.

5.3.1 The Free Electron Gas

Suppose the object in question is a rectangular solid, with dimensions Iy, Iy, I,
and imagine that an electron inside experiences no forces at all, except at the
impenetrable walls:

0, f0<x<ly, O<yxl,and0<z<ly;

oo, otherwise. [5.35]

Vix,5,2) = {
The Schrdinger equation, _,
h?

—5 -V = Ev,
2m

separates, in cartesian coordinates: ¥ (x, v, z) = X (x)Y () Z(z), with

h? d’Xx K2 d*y n? d*z
2m dx? 2m. dy2 - 2m dz2 :

and E = E; + E; + E,. Letting

we obtain the general solutions.

X(x) = Ay sin(k,x) + By cos(kyx), Y (y) = A,y Sin(ky y) + By cos(kyy),
Z(z) = A sin(k;z) + By CO-S'(kz.Z)-

The boundary conditions require that X (0) = Y(0) = Z(0) =0, so B; = By =
B, =0, and X(Iy) =Y (ly) = Z(l;) = 0, so that

kply = nym, Ky l =Ny7 krl; = Nz, [5.36]
where each 7 is a positive integer:
ny=123,..., n,=123..., n,=123,.... [5.37]

The (normalized) wave furnctions are

Y on, = sin hadld x | sin il y | sin e z), [5.38]
e lxl Z"‘ 1 x . ly . .' lz
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and the allowed energies are

il AW L
Enamns = 5 (‘ﬁ YR TE) T I (5.39]

where k is the magnitude of the wave vector, k = (ky, ky. k).
If you imagine a three-dimensional space, with axes ky, ky, k;, and planes
drawn in at ky = (7/L), 27/ 1), 37/ L), ... atky = (w/1y), @u/ly), G/ly),
, and at k, = (7 /l;), 2n /1), Gm/ lz'_),.. . each intersection point represents

k”

FIGURE 5.3: Free electron gas. Fach intersection on the grid represents a stationary
state. Shading itrdicates one “block”’; there is one state for every block.

4
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a distinct (one-particle) stationary state (Figure 5.3). Each block in this grid, and
hence also each state, occupies a volume

]7,-'3 7?."3

- 5.40
Lilyly 1% [5.401

3

of “k-space,” where V = Z;Clylz- is the volume of the object itself. Suppose our
sample contains N atoms, and each atom contributes ¢ free electrons. (In prac-
tice, N will be enormous—on the order of Avogadro’s number, for an object
of macroscopic size—whereas ¢ is a small number—1 or 2, typically.) If ‘elec-
trons were besons (or distinguishable particles), they would all settle down to
the ground state, ¥1ii."> But electrons are in fact identical fermions, subject
to. the Pauli exclusion principle, so only two of them can occupy any given
state. They will fill up one octant of a sphere in k-space,'* whose rtadius, kr,
1s determined by the fact that each pair of electrons requires a volume 3V

(Equation 5.40):
1/4 3\ Ng/[=*
bt = k?) - - 1 -
8 (3” F) 2 (V)

Thus _
where N
q =
= — 5.42
0 v [5.42]

is the free electron density (the number of free electrons per unit volume).

The boundary separating occupied and unoccupied states, in k-space, is called
the Fermi surface (hence the subscript F). The corresponding energy is called the
Fermi energy, E; for a free electron gas, |

2o | |
Ep = —Gpn)*P. [543]

The total energy of the electron gas can be calculated as follows: A shell of
thickness dk (Figure 5.4) contains a volume

1
< (47 k%) dk,

I3_I.’m assuming there is no appreciable thermal cxcitation, or other disturbanee, to lift the solid
ouf of its collective ground state. If you like, I"m talking about a “cold” solid, though {as you will show
in Problem. 5.16(c)), typical solids arc still “cold,” in this sefise, far above room tempcerature.

4Because N is sycha huge numiber, we need not worry about the distinction between the actual
jagged edge of the grid and the smooth spherical surface. that approximates it.

4
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ke

- FIGURE 5.4:  One octant of a spherical shell in k-space.

s0 the number of electron states in the shell is

001 19N 12 '
21/)mk>dkl _ V5
(®3/V) &

Each of these states carries an energy %2k”/2m (Equation 5.39), so the energy of
the shell is .

heks V . .
dE = —— — k> dk, [5.44]
2m mw*

and hence the total energy is

k* dk 1

— — 5.45.
5 1072m 107 2m [5.43]

= f o4 RV _RGTNgP . o

This quantum mechanical energy plays a role rather aralogous to the intérnal
thermal emergy (U) of an ordinary gas. In particular, it exerts a pressure on the
walls, for if the box expands by an amount dV, the total energy decreases:

o 2E@RENGYP o p 2 dv
B =—3"—1— —V / dV == Eo v

and this shows up as work doene on the outside (dW = P dV) by the quantom
pressure P. Evidently

B %Etot. B 2 hzk% N (371,2)2/3;72'05/3

=== = 5.46
3V 3 1072m. Sm [5.46]

P
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Here, then, is a partial answer to. the question of why a cold solid object doesn’t
simply collapse: There is a stabilizing internal pressure, having nothing to do with
eléctron-electron repulsion (which we have ignored) or thermal motion (which we
have excluded), but is strictly quantum mechanical, and derives ultimately from
the antisymmetrization requirement for the wave functions of identical fermions. It
is sometimes called degeneracy pressure, though “exclusion pressure” might be.a
better term. 1

Problem 5.15 Find the average energy per free electron (Ei/Ng), as a fraction
of the Fermi energy. Answer: (3/5)EF.

Problem 5.16 The density of copper is 8.96 gm/cm?, and ifs atomic weight is
63.5 gm/mole. R

(a) Calculate the Fermi energy for copper (Equation 5.43). Assume g = 1, and
give your answer in electron volts.

(b) What is the corresponding electron velocity? Hint: Set Er = (1 /2)m_-v2. Is
1t safe to assume the electrons in copper are nonrelativistic?

(c) At what temperature would the characteristic thermal energy. (kg T, where kg
is the Boltzmann constant and 7 is the Kelvin temperature) equal the Fermi
energy, for copper? Comment: This is called the Fermi temperature. As
long as the actual temperature is substantially below the Fermi température,
the material can be regarded as “cold,” ‘with most of the electrons in the
lowest accessible state. Since the melting point of copper is 1356 K, solid
copper i$ always cold.

(d) Calculate the degeneracy pressure (Equation 5.46) of copper, in the electron
gas model.

Problem 5.17 The bulk modulus of a substance is the ratio of a small decreasé
in pressure to the resulting fractional increase in volume:

dP

B=—-V—.

dV
Show that B = (5/3)P, in the free electron gas model, and use your result.in
Problem 5.16(d) to estimate the bulk modulus of copper. Comment: The observed
value is 13.4 x 100 N/m?, but don’t expect perfect agreement—after all, we’re

We derived Equations 5.41, 543, 5.45, and 546 for the special case of an infinite réctangular
well, bul they hold for containers of any shape, as long as. the number of particles is extrémely large.

1
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neglecting all electron-nucleus and. electron-€lectron forces! Actually, it is rather
surprising that this calculation comes as close as it does.

5.3.2 Band Structure.

We’re now going to improve on the free electron model by including the forces
exerted on the electrons by the regularly spaced, positively charged, essentially
stationary nuclei. The qualitative behavior of solids is dictated to a remarkable
degree by the mere fact that this potential is periodic—its actual shape is relevant
only to the finer details. To show you how it goes, I'm going to develop the simplest
possible model: a one-dimensional Dirac comb, consisting of evenly spaced delta
function spikes (Figure 5.5).'¢ But first I need to introduce a powerful theorem that
vastly simplifies the analysis of periodic potentials.
A periodic petential is one that repeats itself after some fixed distance a:

V(x+a)=V(x). [5.47]
Bloch’s theorem tells us that for such a potential the solutions to the Schrodinger
equation, |
hZ' d21/[ | |
T o3 + V(X)lb = EW? [5..48]
2m dx

can be taken to satisfy the condition

ix +a) = Ky (), [5.49]

for some constant K (by “constant” I mean that it is independent of x; it may well
depend on E).

A V(x)

1 | |
4a 5a 64

i [ 2l >
a 2a 3a 4

—2a -a 0

FIGURE 5.5: The Dirac comb, Equation 5.57.

167t would be miore natural to let the delta functions go down, so as to represent the attractive force
of the nuclei. But then there' would be negative energy solutions as well as positive energy solutions,
and that makes the calculations more-cumbersome (se¢ Problem 5.20). Since all we’re trying to do here
is explore the consequénces of periodicity, it is simpler to adopt this less plausible shape; if it comforts
you, think. of the nuclei-as residing at +a/2, +3a/2, +5a/2,....




Section 5.3: Solids 225

Proof: Let D be the “displacement” operator:
Df(x) = f(x +a). [5.50]
For a periodic potential (Equation 5.47), D commutes with the Hamiltonian:
[D,H]=0, [5.51]

and hence we are free to choose eigenfunctions of H that are simultaneously
eigenfunctions of D: Dy = Ay, or

W (x+ a) = A (x). [5.52]

Now, x is certainly not zero (if it were, then—since Equation 5.52 holds for
all x—we would immediately obtain ¥ (x) = 0, which is not a permissible
eigenfunction); like any nonzero complex number, it can be expressed as an
exponential:

A = ke, [5.53]
for some constant K. QED

At this stage Equation 5.53 is just a strange way to write the eigenvalue A,
but in a moment we will discover that K is in fact real, so that although v (x)
itself is not periodic, |y (x)|? is:

Y&+ =P, [5.54]
as one would certainly expect.!”

Of course, no real solid goes on forever, and the edges are going to spoil
the periodicity of V(x), and render Bloch’s theorem inapplicable, However, for
any macroscepic crystal, containing something-on the order of Avogadro’s number
of atoms, it is hardly imaginable that edge effects can significantly influence the
behavior of electrons deep inside. This suggests the following device to salvage
Bloch's theorem: We wrap the x-axis around in a circle, and connect it onto its
tail, after a large number N =~ 10?* of periods; formally, we impose the boundary
condition |

Y (x + Na) = ¥ (x). [5.55]

It follows (from Equation 5.49) that

eMKay (x) = Yx),

7Indeed, you might be tempted to reverse the argument, sfarting with Equation 5.54, as a way
of proving Bloch's theorem. Tt doesn’t work, for Equation 5.54 alone would allow the phase factor in
Equation 5.49 to be a function of x.

k)
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so ¢VKe — 1, or NKa = 2z n, and hence.
~ 27nn o _
== m. (n - 0_, i ].__, i— 2,: [ ). [556]

In -particular, for this arrangement K is necessarily real. The virtue of Bloch’s
theorem is ‘that we need only selve the Schrédinger Equation within a single cell
(say, on the interval 0 < x < a); recursive application of Equation 5.49 generates
the solufion everywhere else. '

Now, suppose the potential consists of a long string of delta-function spikes
(the Dirac comb):

VE) =a Y 8 — ja). [5.57]

(In Figure 5.5 you must imagine that the x-axis has been “wrapped around,” so
the Nth spike actually appears at x = —a.) No one would pretend that this is a
realistic model, but remember, it is only the effect of periodicity that concerns us
here; the classic. stud_y18 used a repeating rectangular pattern, and many authors
still ‘prefer that one.l? In the region 0 < x < a the potential is zere, so

B2 d?y
2m dx? !
or )
4=\ 2
= —k*y,
dx? v,
where
[2mE
k= — 5.58
as usual,
The general solution is
V¥ (x) = Asin(kx) + Bcos(kx), (0 <x < a). [5.59]

According to Bloch’s theorem, the wave function in the cell immediately to the
left of the origin is

Ww(x) = e K9 Asink(x +a) + Beosk(x +a)], (—a<x<0).  [560]

'8R. de L. Kronig and W. G. Peniney, Proc. R. Soc. Lond., ser. A, 130, 499 (1930).
_ J(’)Se(: for instance, D. Park, Introduction to the Quantum Theory, 3rd ed., MeGraw-Hill, New
York (1992).
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At x = 0, ¥ must be continueus, so
B = e *%%[ A sin(ka) + Bcos(ka)l; [5.61]
its derivative suffers a discontinuity proportional to the strength of the delta function

(Equation 2.125, with the sign of o switched, since these are spikes instead of
wells):

A Imice
kA — ¢ "Kak[ A cos(ka) — B sin(ka)] = %B [5.62]
Solving Equation 5.61 for A sin(ka) yields
A sin(ka) = [¢'K% — cos(ka)]B. [5.63]

Substituting this into Equation 5.62, and cancelling kB, we find

[eifxa cos(ka)] [1 —IKR COS(kﬂ)] + e —iK 4 sin (ka) 277 ]( sln(ka)

which simplifies to
) mo . _
cos(Ka) = cos(ka) + thism(k'a), [5.64]

‘This is the fundamental result, from which all else follows. For the Kronig-Penney
potential (see footnote 18), the formula is mere complicated, but it shares the
qualitative features. we. are about to explore.
Equation 5.64 determines the possible values of %, and hence the allowed
energies. To simplify ‘the notation, let
moa.

z=ka, and B= 7 [5.65]

so the right side of Equation 5.64 can be written as

m@ [5.66]

f(z) =cos(z) + B

The constant 8 is a dimensionless measure of the “strength” of the delta function.
In Figure 5.6 I have plotted f(z), for the case § = 10. The important thing to
notice is that f(z) strays oufsidé the range (—1, +1), and in such regions there is
no hope of solving Equation 5.64, since | cos(Ka)|, of course, cannot be greater
than 1. These gaps represent forbidden energies; they are separated by bands
of allowed energies. Within a given band, virtually any energy is .allowed, since
according to Equation 5.56 Ka = 2ni/N; where N is a huge number, and n can
be any integer. You might imagine drawing N horizontal lines on Figure 5.6, at
values of cos(2mn/N) ranging from +1 (r = 0) dewn to —1 (n = N/2), and back
almost to +1 (n = N — 1)—at this point the Bloch factor ¢!%¢ recycles, so no,
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0 i 2n 3n 4n

FIGURE 5.6: Graph of f(z) (Equation 5.66) for B = 10, showing allowed bands
(shaded) separated by forbidden gaps (where |f(2)| > 1).
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r gap
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% FIGURE 5.7: The allowed energies for a periodic

potential form essentially continuous bands.

new solutions are generated by further increasing n. The intersection of each of
these lines with f(z) yields an allowed energy. Evidently there are N states in each
band, so closely spaced that for most purposes we can regard them as forming a
continuum (Figure 5.7).

So far, we’ve only put one electron in our potential. In practice there will be
Ng of them, where g is again the number of “free” electrons per atom. Because of
the Pauli exclusion principle, only two electrons can occupy a given spatial state,
so if ¢ = 1, they will half fill the first band, if ¢ = 2 they will completely fill the
first band, if ¢ = 3 they half fill the second band, and so on—in the ground state.
(In three dimensions, and with more realistic potentials, the band structure may
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be more complicated, but the existence of allowed bands, separated by forbidden
gaps, persists—band structure is the signature of a periodic potential.)

Now, if a band is entirely filled, it takes a relatively large energy to excite
an electron, since it has to jump across the forbidden zone. Such materials will
be electrical insulators. On the other hand, if a band is only partly filled, it takes
very little energy to excite an electron, and such materials are typically conduc-
tors. If you dope an insulator with a few atoms of larger or smaller ¢, this puts
some “extra” electrons into the next higher band, or creates some holes in the
previously filled one, allowing in either case for weak electric currents to flow;
such materials are called semiconductors. In the free electron model all solids
should be excellent conductors, since there are no large gaps in the spectrum of
allowed energies. It takes the band theory to account for the extraordinary range
of electrical conductivities exhibited by the solids in nature.

Problem 5.18

(a) Using Equations 5.59 and 5.63, show that the wave function for a particle in
the periodic delta function potential can be written in the form

Y(x) = Clsin(kx) + e " X%sink(a —x)], (0 <x < a).

(Don’t bother to determine the normalization constant C.)

(b) There is an exception: At the top of a band, where z is an integer multiple
of m (Figure 5.6), (a) yields ¥ (x) = 0. Find the correct wave function for
this case. Note what happens to ¥ at each delta function.

Problem 5.19 Find the energy at the bottom of the first allowed band, for the

case B = 10, correct to three significant digits. For the sake of argument, assume
a/a=1¢eV.

x xProblem 5.20 Suppose we use delta function wells, instead of spikes (i.e., switch the
sign of & in Equation 5.57). Analyze this case, constructing the analog to Figure 5.6.
This requires no new calculation, for the positive energy solutions (except that g is
now negative; use 8§ = —1.5 for the graph), but you do need to work out the negative
energy solutions (let k = /—2mE/h and z = —«a, for E < 0). How many states
are there in the first allowed band?

Problem 5.21 Show that most of the energies determined by Equation 5.64 are
doubly degenerate. What are the exceptional cases? Hint: Try it for N = 1, 2, 3,
4,..., to see how it goes. What are the possible values of cos(Ka) in each case?
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5.4 QUANTUM STATISTICAL MECHANICS

At absolute zero, a physical system occupies its lowest allowed energy configura-
tion. As we turn up the temperature, random thermal activity will begin to populate
the excited states, and this raises the following question: If we have a large number
N of particles, in thermal equilibrium at temperature T, what is the probability that
a particle, selected at random, would be found to have the specific energy, E;?
Note that the “probability” in question has nothing to do with quantum indeter-
minacy—exactly the same question arises in classical statistical mechanics. The
reason we must be content with a probabilistic answer is that we are typically
dealing with enormous numbers of particles, and we could not possibly expect
to keep track of each one separately, whether or nor the underlying mechanics is
deterministic.

The fundamental assumption of statistical mechanics is that in thermal
equilibrium every distinct state with the same rotal energy, E, is equally proba-
ble. Random thermal motions constantly shift energy from one particle to another,
and from one form (rotational, kinetic, vibrational, etc.) to another, but (absent
external influences) the roral is fixed by conservation of energy. The assumption
(and it’s a deep one, worth thinking about) is that this continual redistribution of
energy does not favor any particular state. The temperature, T, is simply a mea-
sure of the total energy of a system in thermal equilibrium. The only new twist
introduced by quantum mechanics has to do with how we count the distinct states
(i’s actually easier than in the classical theory, because the states are generally
discrete), and this depends critically on whether the particles involved are dis-
tinguishable, identical bosons, or identical fermions. The arguments are relatively
straightforward, but the arithmetic gets pretty dense, so I'm going to begin with
an absurdly simple example, so you'll have a clear sense of what is at issue when
we come 1o the general case.

5.4.1 An Example

Suppose we have just three noninteracting particles (all of mass m) in the one- |
dimensional infinite square well (Section 2.2). The total energy is

242
w<h

E=E4 —I—-EB—I—EC:Z—;(ni—I—n%—I—nZC) [5.67]
ma-*

(see Equation 2.27), where n4, np, and n¢ are positive integers. Now suppose, for
the sake of argument, that E = 363(;x24%/2ma?), which is to say,

ni +n% +n = 363. [5.68]

There are, as it happens, 13 combinations of three positive integers, the sum
of whose squares is 363: All three could be 11, two could be 13 and one 5
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(which occurs in three permutations), one could be 19 and two 1 (again, three
permutations), or one could be 17, one 7, and one 5 (six permutations). Thus
(nq.npg, nc) is one of the following:

(11,11, 11).
(13,13.5), (13,5, 13), (5,13,13).
(1,1.19), (1.19.1), (19,1.1).
(5.7.17), (5, 17.7). (7,5.17). (7.17.5). (17,5, 7), (17,7,5).

If the particles are distinguishable, each of these represents a distinct quantum
state, and the fundamental assumption of statistical mechanics says that in thermal
equilibrium?® they are all equally likely. But I'm not interested in knowing which
particle is in which (one-particle) state, only the total number of particles in each
state—the occupation number, N,, for the state i,. The collection of all occu-
pation numbers for a given 3-particle state we will call the configuration. If all
three are in v, the configuration is

(0,0,0,0.0,0,0.0.0.0,3.0,0,0.0,0,0.0....). [5.69]

(i.e., Nj; = 3, all others zero). If two are in {13 and one is in s, the configura-
tion is

(0.0.0.0,1.0,0,0.0,0,0.0.2,0,0.0.0....), [5.70]

(i.e., Ns = 1, Nj3 = 2, all others zero). If two are in | and one is in V9, the
configuration is

(2,0,0.0,0,0,0.0,0,0.0,0.0,0,0,0.0,0.1,0....), [5.71]

(i.e., N| = 2, Njg = 1, all others zero). And if there is one particle in /s, one in
Y7, and one in Y7, the configuration is

(0.0.0,0.1,0.1.0.0.0,0,0.0.0.0,0,1.0.0,...). [5.72]

(i.e., Ns = N7 = Ny7 = 1, all others zero.) Of these, the last is the most probable
configuration, because it can be achieved in six different ways, whereas the middle
two occur three ways, and the first only one.

20How the particles maintain thermal equilibrium. if they really don’t interact at all. is a problem
I'd rather not worry about—maybe God reaches in periodically and stirs things up (being careful not
to add or remove any energy). In real life, of course, the continual redistribution of energy is caused
precisely by interactions between the particles. so if you don’t approve of divine intervention let there
be extremely weak interactions—sufficient to thermalize the system (at least. over long time periods).
but oo smali to alter the stationary states and the allowed energies appreciably.
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Returning now to my original question, if we select one of these three particles
at random, what is the probability (P,) of getting a specific (allowed) energy E,?
The only way you can get E is if it’s in the third configuration (Equation 5.71); the
chances of the system being in that configuration are 3 in 13, and in that config-
uration the probability of getting E; is 2/3, so Py = (3/13) x (2/3) = 2/13.
You could get Es either from configuration 2 (Equation 5.70)—chances 3 in
13—with probability 1/3, or from configuration 4 (Equation 5.72)—chances 6
in 13—with probability 1/3, so Ps = (3/13) x (1/3) + (6/13) x (1/3) = 3/13.
You can only get E7 from configuration 4; P; = (6/13) x (1/3) = 2/13. Like-
wise, E1) comes only from the first configuration (Equation 5.69)—chances 1 in
13—with probability 1: Py; = (1/13). Similarly, Pz = (3/13) x (2/3) = 2/13,
P17 = (6/13) x (1/3) = 2/13, and P9 = (3/13) x (1/3) = 1/13. As a check,
note that

3 2 1 2 2 1

2
P == — =1
1+ Ps+Pr+tPutPatPutPo=ot ot ot EtE TRt o

That's when the particles are distinguishable. If in fact they are identical
fermions, the antisymmetrization requirement (leaving aside spin, for simplicity—or
assuming they are all in the same spin state, if you prefer) excludes the first three
configurations (which assign two—or, worse still, three—particles to the same
state), and there is just one state in the fourth configuration (see Problem 5.22(a)).
For identical fermions, then, Ps = P; = Pj7 = 1/3 (and again the sum of the
probabilities is 1). On the other hand, if they are identical bosons the symmetriza-
tion requirement allows for one state in each configuration (see Problem 5.22(b)),
so P = (1/4) x (2/3) = 1/6, Ps = (1/4) x (1/3) + (1/4) x (1/3) = 1/6,
P =(1/4) x(1/3) = 1/12, P;y = (1/4) x (1) = 1/4, P13 = (1/4) x (2/3) = 1/6,
Pi7 = (1/4) x (1/3) = 1/12, and P9 = (1/4) x (1/3) = 1/12. As always, the
sum is 1.

The purpose of this example was to show you how the counting of states
depends on the nature of the particles. In one respect it was actually more compli-
cated than the realistic situation, in which N is a huge number. For as N grows,
the most probable configuration (in this example, N5 = N7 = N7 = 1, for the case
of distinguishable particles) becomes overwhelmingly more likely than its competi-
tors, so that, for statistical purposes, we can afford to ignore the others altoge'ther:31
The distribution of individual particle energies, at equilibrium, is simply their dis-
tribution in the most probable configuration. (If this were true for N = 3—which,
obviously, it is not—we would conclude that Ps = P; = P; = 1/3 for the case
of distinguishable particles.) I'll return to this point in Section 5.4.3, but first we
need to generalize the counting procedure itself.

2! This is an astonishing and counterintuitive fact about the statistics of large numbers. For a good
discussion see Ralph Baicrlein, Thermal Physics. Cambridge U.P. (1999). Scction 2.1.
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«Problem 5.22

(a) Construct the completely antisymmetric wave function ¥ (x4.xp, x¢) for
three identical fermions, one in the state s, one in the state 7, and one in
the state ;7.

(b) Construct the completely symmetric wave function ¥ (x4. xg. x¢) for three
identical bosons, (i) if all three are in state iy, (ii) if two are in state V¥,
and one is in state Y9, and (iii) if one is in the state s, oné in the state yr7,
and one in the state V(7.

*Problem 5.23 Suppose you had three (noninteracting) particles, in thermal equi-
librium, in a one-dimensional harmonic oscillator potential, with a total energy
E=09/2Q)how.

(a) If they are distinguishable particles (but all with the same mass), what are
the possible occupation-number configurations, and how many distinct (three-
particle) states are there for each one? What is the most probable configura-
tion? If you picked a particle at random and measured its energy, what values
might you get, and what is the probability of each one? What is the most
probable energy?

(b) Do the same for the case of identical fermions (ignoring spin, as we did in
Section 5.4.1).

(c) Do the same for the case of identical bosons (ignoring spin).

5.4.2 The General Case

Now consider an arbitrary potential, for which the one-particle energies are E|, E>,
Ej. ..., with degeneracies d|,d>,ds.... (i.e., there are d, distinct one-particle
states with energy E,). Suppose we put N particles (all with the same mass) into
this potential; we are interested in the configuration (Nj. N3. N3....), for which
there are N, particles with energy E|, N particles with energy E>, and so on.
Question: How many different ways can this be achieved (or, more precisely,
how many distinct states correspond to this particular configuration)? The answer,
Q(N|. N3. N3....), depends on whether the particles are distinguishable, identical
fermions, or identical bosons, so we’ll treat the three cases separately.??

First, assume the particles are distinguishable. How many ways are there to
select (from the N available candidates) the N| to be placed in the first “bin”?

2The presentation here follows closely that of Amnon Yariv, An Introduction to Theory and
Applications of Quantum Mechanics. Wiley. New York (1982).
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Answer: the binomial coefficient, “N choose N;,”

N\ _ N!
(M) = NN - N [5.73]

For there are N ways to pick the first particle, leaving (N — 1) for the second, and
SO on:

N(N—l)(N—Z)...(N—N1+l)=m.

However, this counts separately the N;! different permutations of the N particles,
whereas we don’t care whether number 37 was picked on the first draw, or on
the 29th draw; so we divide by N;!, confirming Equation 5.73. Now, how many
different ways can those N, particles be arranged within the first bin? Well, there
are d) states in the bin, so each particle has d| choices; evidently there are (dh
possibilities in all. Thus the number of ways to put N particles, selected from a
total population of N, into a bin containing d; distinct options, is

N
NI (N =NV

The same goes for bin 2, of course, except that there are now only (N — N)
particles left to work with:

(N—NDld,*
N> (N — Ny — Np)!'

and so on. It follows that

Q(N{.N>.Ns3....)

N4 (N — Np)dd” (N — Nj — Ny)ld3?

" NN = N)! N)!(N — N; — N2)! N3W(N — N; — N3 — N3)!
d)\dy*dy" ... il

=nN1-L 23 =nN'|]2Z. 5.74
N|!N2!N3! ... H N,! [ ]

(You should pause right now and check this result, for the example in Section 5.4.1—
see Problem 5.24.)

The problem is a lot easier for identical fermions. Because they are indis-
tinguishable, it doesn’t matter which particles are in which states—the antisym-
metrization requirement means that there is just one N-particle state in which a
specific set of one-particle states are occupied. Moreover, only one particle can

( 4 )
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ways to choose the N,, occupied states in the nth bin,2? so

00

Q(Nl,Ng.N3....)=HN TERETTATE

n=I

[5.75]

(Check it for the example in Section 5.4.1 —see Problem 5.24.)

The calculation is hardest for the case of identical bosons. Again, the sym-
metrization requirement means that there is just one N-particle state in which a
specific set of one-particle states are occupied, but this time there is no restriction
on the number of particles that can share the same one-particle state. For the nth
bin, the question becomes: How many different ways can we assign N,, identical
particles to d, different slots? There are many tricks to solve this combinatorial
problem; an especially clever method is as follows: Let dots represent particles and
crosses represent partitions, so that, for example, if d, =5 and N, =7,

e ¢ X ¢ X0 06 ¢ X @ X

would indicate that there are two particles in the first state, one in the second, three
in the third, one in the fourth, and none in the fifth. Note that there are N, dots,
and (d,, — 1) crosses (partitioning the dots into d,, groups). If the individual dots
and crosses were labeled, there would be (N,, + d, — 1)! different ways to arrange
them. But for our purposes the dots are all equivalent— permuting them (N,,! ways)
does not change the state. Likewise, the crosses are all equivalent—permuting them
((d, — 1)! ways) changes nothing. So there are in fact

(Ny +dy — 1! . (Nn +d, — 1)
N,,!(d,, - l)! Nn

distinct ways of assigning the N, particles to the d,, one-particle states in the nth
bin, and we conclude that

[5.76]

= Nn dn - D!
QN1 No, Ny = [[ Lot dn =L [5.77]
n=|

Np'(d, — 1)!

(Check it for the Example in Section 5.4.1—see Problem 5.24.)

*Problem 5.24 Check Equations 5.74, 5.75, and 5.77, for the example in Sec-
tion 5.4.1.

* xProblem 5.25 Obtain Equation 5.76 by induction. The combinatorial question is
this: How many different ways can you put N identical balls into d baskets (never

23This should be zero. of course, if Ny > dy. and it is, provided we consider the factorial of a
negative integer to be infinite.
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mind the subscript n for this problem). You could stick all N of them into the third
basket, or all but one in the second basket and one in the fifth, or two in the first
and three in the third and all the rest in the seventh, etc. Work it out explicitly for
the cases N =1, N =2, N =3, and N = 4, by that stage you should be able to
deduce the general formula.

5.4.3 The Most Probable Configuration

In thermal equilibrium, every state with a given total energy E and a given particle
number N is equally likely. So the most probable configuration (N, N2, N3, ...)
is the one that can be achieved in the largest number of different ways—it is that
particular configuration for which Q(N;, N3, N3....) is a maximum, subject to

the constraints
o0

. N, =N, [5‘78]

and

w
Z N,E, = E. [5.79]

n=l

The problem of maximizing a function F(x;. X2, x3,...) of several variables,
subject to the constraints fj(x;, x2.x3....) = 0, fa(x],x2,x3....) =0, etc,, is
most conveniently handled by the method of Lagrange multipliers.2* We introduce
the new function

Gxip.xa.xz..... AL ) =F+MA+0h+ -, [5.80]

and set all its derivatives equal to zero:

0G 0G
— 0. . —

—=0 —=0. 5.81
0x, oAy [ ]

In our case it’s a little easier to work with the logarithm of Q, instead of
Q itself—this turns the products into sums. Since the logarithm is a monotonic
function of its argument, the maxima of Q and In(Q) occur at the same point. So

we let
Gsln(Q)—i—a[N—ZNniI+ﬁ[E—ZN,,E,,iI. [5.82]

n=1 n=l

HSec. for example, Mary Boas. Mathematical Methods in the Physical Sciences, 2nd ed.. Wiley.
New York (1983), Chapter 4. Section 9.
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where o and B are the Lagrange multipliers. Setting the derivatives with respect
to o and B equal to zero merely reproduces the constraints (Equations 5.78 and
5.79); it remains, then, to set the derivative with respect to N, equal to zero.

If the particles are distinguishable, then Q is given by Equation 5.74, and we
have

oo
G =In(N") + ) _ [Ny In(dy) — In(N, )]

n=lI

[5.83]
00 00
4+ o N—ZN,, + B E—ZNnEn
n=|\ n=lI

Assuming the relevant occupation numbers (N,,) are large, we can invoke Stirling’s
approximation:?
In(z) = zIn(z) —z forz > I, [5.84]

to write

oo
G = Z [Ny In(dy) — N, In(Ny) + Ny, —aN, — BE,N,]

n=l

+ In(N!) +aN + BE. [5.85]

It follows that 96
—— =In(dy) — In(N,) —a — BE,. [5.86]

Ny

Setting this equal to zero, and solving for N,, we conclude that the most probable
occupation numbers, for distinguishable particles, are

N, =d,e”@tBE) [5.87]

If the particles are identical fermions, then Q is given by Equation 5.75, and
we have

o0
G= Z {In(d,!) — In(N,") — In[(d;, — N))!1}

n=\

[5.88]
o o
+ o N'—ZNn +}3 E_ZNMEM

n=I n=lI

B3 Stirling's approximation can be improved by including more terms in the Stirling series, but
the first two will suffice for our purposes. See George Arfken and Hans-Jurgen Weber, Marthematical
Methods for Physicists, 5th ed.. Academic Press, Orlando (2000). Section 10.3. If the relevant occupation
numbers are not large—as in Section 5.4.1—then statistical mechanics simply doesn’t apply. The whole
point is to deal with such enormous numbers that statistical inference is a reliable predictor. Of course.
there will always be one-particle states of extréemely high energy that are not populated at ail: fortunately.
Stirling’s approximation holds also for z = 0. [ use the word “relevant™ to exclude any stray states right
at the margin, for which N, is neither huge nor zero.
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This time we must assume not only that N, is large, but also that d, > N, 26 so
that Stirling’s approximation applies to both terms. In that case

00
G = Z[ln(dn ) — Ny In(Ny) + N, — (dy, — Ny) In(d,, — Ny)
n=| [5.89]

+ (dy — Np) —aNy — ﬁEnNn] +aN +l3E‘

SO
0G
— = —In(N,) +In(dy, — N,) —a — BE,,. [5.90]
dN,

Setting this equal to zero, and solving for N,,, we find the most probable occupation
numbers for identical fermions:

dll

N" = e(ﬂ"*"ﬁEu) + ] )

[5.91]

Finally, if the particles are identical bosons, then Q is given by Equation 5.77,
and we have

G =) {In[(Ny, +dp — D!]— In(Ny!) — Inl(d, — D]}

n=|

+a[N—§:N,,j|+ﬁ[E—iN,,E,,].

n=lI n=lI

[5.92]

Assuming (as always) that N, > 1, and using Stirling’s approximation:

G= {(Np+dy —1)In(N, +dy — 1) — (N, +dy — 1) — N,y In(N,)

— [5.93]
+ Ny —In[(d, — 1)!] —aN, — BE,N,} +aN + BE.

Ivr

I

SO
G
éTV— =In(N; +d, — 1) —In(N,,) —a — BE,. [5.94]
n

2010 one dimension the energies are nondegencrate (see Problem 2.45), but in three dimensions

dy typically increases rapidly with increasing n (for example, in the case of hydrogen, d; = 112). So
it is not unreasonable to assume that for most of the occupied states dj, >> 1. On the other hand.
dy is certainly not much greater than N,, at absolute zero, where all states up to the Fermi level are
filled. and hence d; = N),. Here again we are rescued by the fact that Stirling's formula holds also for
z=0.
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Setting this equal to zero, and solving for N,, we find the most probable occupation
numbers for identical bosons:

dn_l

Nn = __e(ﬂ’-l-ﬁEu) — ]

[5.95]

(For consistency with the approximation already invoked in the case of fermions,
we should really drop the 1 in the numerator, and I shall do so from now on.)

Problem 5.26 Use the method of Lagrange multipliers to find the rectangle of
largest area, with sides parallel to the axes, that can be inscribed in the ellipse
(x /a)2 + (y/b)2 = ]. What is that maximum area?

Problem 5.27

(a) Find the percent error in Stirling’s approximation for z = 10.

(b) What is the smallest integer z such that the error is less than 1%?

5.4.4 Physical Significance of & and B

The parameters o and B came into the story as Lagrange multipliers, associated
with the total number of particles and the total energy, respectively. Mathemati-
cally, they are determined by substituting the occupation numbers (Equations 5.87,
5.91, and 5.95) back into the constraints (Equations 5.78 and 5.79). To carry out
the summation, however, we need to know the allowed energies (E,), and their
degeneracies (d,), for the potential in question. As an example, I’'ll work out the
case of an ideal gas-—a large number of noninteracting particles, all with the same
mass, in the three dimensional infinite square well. This will motivate the physical
interpretation of « and .
In Section 5.3.1 we found the allowed energies (Equation 5.39):

Ep = —k~, [5.96]

Thy TNy TN
k= =, .
( [y Iy - )

As before, we convert the sum into an integral, treating k as a continuous variable,
with one state (or, for spin s, 25 + 1 states) per volume 73/ V of k-space. Taking

where
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as our “bins” the spherical shells in the first octant (see Figure 5.4), the “degener-
acy” (that is, the number of states in the bin) is

14k dk v ,
= - = k* dk. 5.97
8 (73/V)  2m% B3]

For distinguishable particles (Equation 5.87), the first constraint (Equation 5.78)

dr

becomes
3/2
N = _V_‘).e—my foo e_ﬁhlkz/ilmkz dk — Ve—a( m 7) / .
2m= o 2 B
SO .
N (2mBr*\""
e = V( ”,51 ) : [5.98]

The second constraint (Equation 5.79) says

2 3/2
272 2m ~ 28 B }
0 mBh

or, putting in Equation 5.98 for e™%:

L
28

(If you include the spin factor, 25 + 1, in Equation 5.97, it cancels out at this point,

so Equation 5.99 is correct for all spins.)

This result (Equation 5.99) is reminiscent of the classical formula for the
average kinetic energy of an atom at temperature 7:%’

E 3

— = —kpgT, 5.100
N = k8T [ ]
where kp is the Boltzmann constant. This suggests that 8 is related to the temper-

ature:

E [5.99]

1
_kBT.

To prove that this holds in general, and not simply for distinguishable particles
in the three-dimensional infinite square well, we would have to demonstrate that
different substances in thermal equilibrium with one another have the same value of
B. The argument is sketched in many books,?® but I shall not reproduce it here—I
will simply adopt Equation 5.101 as the definition of T.

B [5.101]

27sce. for example. David Halliday, Robert Resnick. and Jearl Walker., Fundamentals of Physics.
5th ed.. Wiley. New York (1997). Section 20-5.

28See. for example. Yariv (footnote 22), Section 15.4.
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It is customary to replace « (which, as is clear from the special case of
Equation 5.98, is a function of T) by the so-called chemical potential,

u(T) = —akpT, [5.102]

and rewrite Equations 5.87, 5.91, and 5.95 as formulas for the most probable
number of particles in a particular (one-particle) state with energy € (to go from
the number of particles with a given energy to the number of particles in a
particular stare with that energy, we simply divide by the degeneracy of the
state):

[ (=) kT MAXWELL-BOLTZMANN

1 |
n() =\ et 47 [ERMI-DIRAC [5.103]
1

\ e(e-ﬂ)/kﬁT —_ 1

BOSE-EINSTEIN

The Maxwell-Boltzmann distribution is the classical result, for distinguishable
particles; the Fermi-Dirac distribution applies to identical fermions, and the Bose-
Einstein distribution is for identical bosons.

The Fermi-Dirac distribution has a particularly simple behavior as T — O:

(e—1)/kpT 0. ife < u(0).
¢ — { 0o, ife > wu(0),

SO
1. if € < u(0).

ne) - { 0. ife> u(0). [5.104]
All states are filled, up to an energy 1 (0), and none are occupied for energies above
this (Figure 5.8). Evidently the chemical potential at absolute zero is precisely the
Fermi energy:

u(0) = EF. [5.105]

As the temperature rises, the Fermi-Dirac distribution “softens” the cutoff, as indi-
cated by the rounded curve in Figure 5.8.

Returning now to the special case of an ideal gas, for distinguishable particles
we found that the total energy at temperature T is (Equation 5.99)

E= ;NkBT. [5.106]
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n(e) A

T>0

Er=u(0)

?
FIGURE 5.8: Fermi-Dirac distribution for T = 0 and for T somewhat above zero.

while (from Equation 5.98) the chemical potential is

N 3 2 hi?
TY=kgT |In|{ — ~1 i 107
1w(T) B [n(v>+2n(mkﬂ)] [5.107]

1 would like to work out the corresponding formulas for an ideal gas of identical
fermions and bosons, using Equations 5.91 and 5.95 in place of Equation 5.87. The
first constraint (Equation 5.78) becomes

1% fore k2
= - dk
2rs Jo o elth"k=/2m)—ul/kgT + 1

N [5.108]

(with the plus sign for fermions and minus for bosons), and the second constraint
(Equation 5.79) reads

V K2 [ k4

E=o—— 3 dk
212 2m Jy o olthk22m—pl/ksT + 1

[5.109]

The first of these determines w(7), and the second determines E(T) (from the
latter we obtain, for instance, the heat capacity: C = d E/9T). Unfortunately, these
integrals cannot be evaluated in terms of elementary functions, and I shall leave it
for you to explore the matter further (see Problems 5.28 and 5.29).

Problem 5.28 Evaluate the integrals (Equations 5.108 and 5.109) for the case of
identical fermions at absolute zero. Compare your results with Equations 5.43 and
5.45. (Note that for electrons there is an extra factor of 2 in Equations 5.108 and
5.109, to account for the spin degeneracy.)
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% % xProblem 5.29

(a)

(b)

(d)

Show that for bosons the chemical potential must always be less than the
minimum allowed energy. Hint: n(¢) cannot be negative.

In particular, for the ideal bose gas, u(T) < O for all T. Show that in this
case #(T) monotonically increases as T decreases, assuming N and V are
held constant. Hint: Study Equation 5.108, with the minus sign.

A crisis (called Bose condensation) occurs when (as we lower T) u(T) hits
zero. Evaluate the integral, for 4 = 0, and obtain the formula for the critical
temperature 7, at which this happens. Below the critical temperature, the
particles crowd into the ground state, and the calculational device of replacing
the discrete sum (Equation 5.78) by a continuous integral (Equation 5.108)
loses its validity.2? Hint:

00 x.\—l

f : dx =T (s)¢(s). [5.110]
0 et —1

where I" is Euler’s gamma function and ¢ is the Riemann zeta function.

Look up the appropriate numerical values.

Find the critical temperature for 4He. Its density, at this temperature, is
0.15 gm/cm>. Comment: The experimental value of the critical temperature
in “He is 2.17 K. The remarkable properties of *He in the neighborhood of
T, are discussed in the reference cited in footnote 29.

5.4.5 The Blackbody Spectrum

Photons (quanta of the electromagnetic field) are identical bosons with spin 1, but

they

are very special, because they are massless particles, and hence intrinsically

relativistic. We can include them here, if you are prepared to accept four assertions
that do not belong to nonrelativistic quantum mechanics:

1.

2.

3.

The energy of a photon is related to its frequency by the Planck formula,
E=hv=ho.

The wave number k is related to the frequency by k = 27 /X = w/c, where
¢ is the speed of light.

Only two spin states occur (the quantum number /n can be 41 or —1, but
not 0).

YSee F. Mandl. Statistical Physics. Wiley, London (1971). Section 11.5.
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4. The number of photons is not a conserved quantity; when the temperature
rises, the number of photons (per unit volume) increases.

In view of item 4, the first constraint (Equation 5.78) does not apply. We
can take account of this by simply setting « — 0, in Equation 5.82 and every-
thing that follows. Thus the most probable occupation number, for photons, is

(Equation 5.95):
dk

Ny = ———.
@ = Jhw/ksT _ |

[5.111]

For free photons in a box of volume V, dj is given by Equation 5.97,%® multiplied

by 2 for spin (item 3), and expressed in terms of w instead of k (item 2):

1%
dy = =o' do. [5.112]
n=c

So the energy density, N, /iw/V, in the frequency range dw, is p(w) dw, where

hw?

72c3 (eha)/kBT — 1) ‘

plw) = [5.113]

This is Planck’s famous formula for the blackbody spectrum, giving the energy
per unit volume, per unit frequency, for an electromagnetic field in equilibrium at
temperature 7. It is plotted, for three different temperatures, in Figure 5.9.

Problem 5.30

(a) Use Equation 5.113 to determine the energy density in the wavelength range
di. Hint: Set p(w)dw = p())dX, and solve for p(A).

(b) Derive the Wien displacement law for the wavelength at which the black-
body energy density is a maximum:

2.90 x 1073 mK
Amax = T . [5.114]

Hint: You’ll need to solve the transcendental equation (5 — x) = 5S¢,
using a calculator or a computer; get the numerical answer accurate to three
significant digits.

0mn truth. we have no business using this formula. which came from the (nonrclativistic)
Schrédinger cquation: fortunately, the degencracy is exactly the same for the relativistic case. See
Problem 5.36.
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1.8 -—— Visible region—>

p(w) [10715 J/m3 Hz]

2000 K

Frequency [10'* Hz]

FIGURE 5.9: Planck’s formula for the blackbody spectrum, Equation 5.113.

Problem 5.31 Derive the Stefan-Boltzmann formula for the total energy density
in blackbody radiation:

E kg \ —16 -3 —4) 74
V_(W)T _(7.57.>< 10716 Im—3K )T. [5.115]

Hint: Use Equation 5.110 to evaluate the integral. Note that ¢{(4) = m* /90.

FURTHER PROBLEMS FOR CHAPTER 5

Problem 5.32 Imagine two noninteracting particles, each of mass m, in the one-
dimensional harmonic oscillator potential (Equation 2.43). If one is in the ground
state, and the other is in the first excited state, calculate ((x; — x2)?), assuming
(a) they are distinguishable particles, (b) they are identical bosons, and (c) they are
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identical fermions. Ignore spin (if this bothers you, just assume they are both in
the same spin state).

Problem 5.33 Suppose you have three particles, and three distinct one-particle
states (Y, (x), ¥p(x), and ¥.(x)) are available. How many different three-particle
states can be constructed, (a) if they are distinguishable particles, (b) if they are
identical bosons, (c) if they are identical fermions? (The particles need not be in
different states— ¥, (x1) ¥, (x2)¥,(¥3) would be one possibility, if the particles are
distinguishable.)

Problem 5.34 Calculate the Fermi energy for noninteracting electrons in a fwo-
dimensional infinite square well. Let o be the number of free electrons per unit
area.

* % xProblem 5.35 Certain cold stars (called white dwarfs) are stabilized against grav-
itational collapse by the degeneracy pressure of their electrons (Equation 5.46).
Assuming constant density, the radius R of such an object can be calculated as
follows:

(a) Write the total electron energy (Equation 5.45) in terms of the radius, the
number of nucleons (protons and neutrons) N, the number of electrons per
nucleon ¢, and the mass of the electron m.

(b) Look up, or calculate, the gravitational energy of a uniformly dense sphere.
Express your answer in terms of G (the constant of universal gravitation),
R, N, and M (the mass of a nucleon). Note that the gravitational energy is
negative.

(c) Find the radius for which the total energy, (a) plus (b), is a minimum. Answer:

R = %)2/3 g’/
4 GmM?2N!/3’

(Note that the radius decreases as the total mass increases!) Put in the actual
numbers, for everything except N, using ¢ = 1/2 (actually, ¢ decreases a bit
as the atomic number increases, but this is close enough for our purposes).
Answer: R =7.6 x 105N~1/3 m,

(d) Determine the radius, in kilometers, of a white dwarf with the mass of the
sun.

(e} Determine the Fermi energy, in electron volts, for the white dwarf in (d),
and compare it with the rest energy of an electron. Note that this system is
getting dangerously relativistic (see Problem 5.36).
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* * *Problem 5.36 We can extend the theory of a free electron gas (Section 5.3.1) to
the relativistic domain by replacing the classical kinetic energy, E = p?/2m, with
the relativistic formula, E = /p2c? + m2c* — mc?. Momentum is related to the
wave vector in the usual way: p = hk. In particular, in the extreme relativistic
limit, E = pc = hck.

(a)

(b)

(c)

Replace /i2k?/2mn in Equation 5.44 by the ultra-relativistic expression, fick,
and calculate Eio in this regime.

Repeat parts (a) and (b) of Problem 5.35 for the ultra-relativistic electron gas.
Notice that in this case there is no stable minimum, regardless of R; if the
total energy is positive, degeneracy forces exceed gravitational forces, and the
star will expand, whereas if the total is negative, gravitational forces win out,
and the star will collapse. Find the critical number of nucleons, N,, such that
gravitational collapse occurs for N > N,. This is called the Chandrasekhar
limit. Answer: 2.04 x 10°7. What is the corresponding stellar mass (give
your answer as a multiple of the sun’s mass). Stars heavier than this will not
form white dwarfs, but collapse further, becoming (if conditions are right)
neutron stars.

At extremely high density, inverse beta decay, e~ + p* — n + v, converts
virtually all of the protons and electrons into neutrons (liberating neutrinos,
which carry off energy, in the process). Eventually neutron degeneracy pres-
sure stabilizes the collapse, just as electron degeneracy does for the white
dwarf (see Problem 5.35). Calculate the radius of a neutron star with the
mass of the sun. Also calculate the (neutron) Fermi energy, and compare
it to the rest energy of a neutron. Is it reasonable to treat a neutron star
nonrelativistically?

x % *Problem 5.37

(a)

Find the chemical potential and the total energy for distinguishable particles in
the three dimensional harmonic oscillator potential (Problem 4.38). Hint: The
sums in Equations 5.78 and 5.79 can be evaluated exactly, in this case—no
need to use an integral approximation, as we did for the infinite square well.
Note that by differentiating the geometric series,

1 o0
— z_\-", [5.116]

—_— .\'
1 n=0

you can get

d Ry = "
AT =z(n+1)x

n=|
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and similar results for higher derivatives. Answer:

E=§th(1_e—ﬁw/k3T)' [5.117]

(b) Discuss the limiting case kT < hw.

(c) Discuss the classical limit, kT >>> hw, in the light of the equipartition
theorem.>! How many degrees of freedom does a particle in the three
dimensional harmonic oscillator possess?

3 See. for example, Halliday and Resnick (footnote 27). Section 20-9.



PART I APPLICATIONS

CHAPTER 6

TIME-INDEPENDENT
PERTURBATION THEORY

6.1 NONDEGENERATE PERTURBATION THEORY

6.1.1 General Formulation

Suppose we have solved the (time-independent) Schrédinger equation for some
potential (say, the one-dimensional infinite square well):

0,0 0.0
H wll = E" wll N [6 l]
obtaining a complete set of orthonormal eigenfunctions, w,?,

(1”;?'1”;?1) = Spm - [62]

and the corresponding eigenvalues E,?. Now we perturb the potential slightly (say,
by putting a little bump in the bottom of the well—Figure 6.1). We'd like to find
the new eigenfunctions and eigenvalues:

Hvry = Eyin, [6.3]

but unless we are very lucky, we're not going to be able to solve the Schrodinger
equation exactly, for this more complicated potential. Perturbation theory is a
systematic procedure for obtaining approximate solutions to the perturbed problem,
by building on the known exact solutions to the unperturbed case.

249
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V(x) A

FIGURE 6.1: Infinite square well with small perturbation.

To begin with we write the new Hamiltonian as the sum of two terms:
H=H’+\H' [6.4]

where H' is the perturbation (the superscript O always identifies the unperturbed
quantity). For the moment we’ll take A to be a small number; later we’ll crank it
up to 1, and H will be the true Hamiltonian. Next we write v, and E, as power
series in A:

Un =Yy + A0 H A 4 [6.5]

Ey=EX+AE} + VEp+--- . [6.6]
Here E] is the first-order correction to the nth eigenvalue, and v, is the first-order
correction to the nth eigenfunction; E> and v are the second-order corrections,
and so on. Plugging Equations 6.5 and 6.6 into Equation 6.3, we have:
(H® + AHOYO + Ay} + A2y2 -]

= (E) +AEy + A2E; + - Y + My + A2+,

or (collecting like powers of A):

HO¢;? + )‘(H0¢)1 + Hl¢;?) + Az(HO¢3 + H/¢;£) + e
= Eg + MENW, + Eg¥) + M (EQvy + Egv, + Eqi)) + -
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To lowest order! (A0) this yields Ho%? = E%y9, which is nothing new (Equa-
tion 6.1). To first order (A1),

H, + H'Yy) = ENVy + Eg V- [6.7)
To second order (A?),
Hoy + H'Yy = EQVi + Exy + Exiy), [6.8]

and so on. (I'm done with A, now—it was just a device to keep track of the
different orders—so crank it up to 1.)

6.1.2 First-Order Theory

Taking the inner product of Equation 6.7 with w,? (that is, multiplying by (1”;?)*
and integrating),

WOHOY + (WO H YD) = EQwlluhy + ENully?).

But H? is hermitian, so

(W HOwLy = (HOyOwly = (ESyO1w)y = EQ Oy,

and this cancels the first term on the right. Moreover, W;?W,?) =1, so?

Ey = (YOI H'|yD). [6.9]

This is the fundamental result of first-order perturbation theory; as a practical
matter, it may well be the most important equation in quantum mechanics. It
says that the first-order correction to the energy is the expectation value of the
perturbation, in the unperturbed state.

Example 6.1 The unperturbed wave functions for the infinite square well are

(Equation 2.28)
2 ni
O/ — /2 o5 e
¥, (x) = ‘/ p sm( p .\) .

F'As always (Chapter 2. footnote 25) the uniqueness of power series expansions guarantees that
the coefficients of like powers are equal.

2In this context it doesn’t matter whether we write (1//,(,) |H '1//,‘,)) or (1//,9|H ’|1//,(,)) (with the extra
vertical bar). because we are using the wave function itself to “label” the state. But the latter notation
is preferable, because it frees us from this specific convention.
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V(x) 4

FIGURE 6.2: Constant perturbation over the whole well.

Suppose we perturb the system by simply raising the “floor” of the well a constant
amount Vy (Figure 6.2). Find the first-order correction to the energies.

Solution: In this case H' = Vj), and the first-order correction to the energy of the
nth state 1s

E} = (@2volwd) = vowl1y?) = vh.

The corrected energy levels, then, are E,, = EY + Vp; they are simply lifted by the
amount Vp. Of course! The only surprising thing is that in this case the first-order
theory yields the exact answer. Evidently for a constant perturbation all the higher
corrections vanish.® On the other hand, if the perturbation extends only half-way
across the well (Figure 6.3), then

El == sin

PAY) “/3_2()17r.) _W
a Jo

In this case every energy level is lifted by Vy/2. That's not the exact result,
presumably, but it does seem reasonable, as a first-order approximation.

Equation 6.9 is the first-order correction to the energy: to find the first-order
correction to the wave function we first rewrite Equation 6.7:

(H° — EDy,) = —(H' — Epy. [6.10)

3Incidenlally. nothing here depends on the specific nature of the infinite square well—the same
holds for any potential. when the perturbation is constant.
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N

FIGURE 6.3: Constant perturbation over half the well.

The right side is a known function, so this amounts to an inhomogeneous differential
equation for v/, Now, the unperturbed wave functions constitute a complete set,
so ¥, (like any other function) can be expressed as a linear combination of them:

e =D v [6.11]
m#n

There is no need to include m = n in the sum, for if ¥} satisfies Equation 6.10, so
too does (¥, +a?), for any constant o, and we can use this freedom to subtract
off the 0 term.* If we could determine the coefficients ¢y, we’d be done.

Well, putting Equation 6.11 into Equation 6.10, and using the fact that the

satisfies the unperturbed Schrodinger equation (Equation 6.1), we have

Z(El(l)l - ES)C;(721)¢191 = _(H, - E;EW;?-
m#£n

Taking the inner product with ¢P .

Y (ED — EDSPWPIwd) = — W H 1Y) + EN P 1w
m#n

4Aliernatively, a glance at Equation 6.5 reveals that any \_[/,(,) component in \[/,! might as well
be pulled out and combined with the first term. In fact, the choice c,(,”) = () ensures that v, —with 1
as the coefficient of W;(;) in Equation 6.5—is normalized (1o first order in A): (Y, [¢y) = (\l/,(,)lql/,(,)) +
() w9 + (WO1¥))) + A2(---) + -~ -. but the orthonormality of the unperturbed states means that

the first term is 1 and (v, w0y = ('l//,(,)h[/,!) =0, as long as ¥, has no ¥ component.
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If I = n, the left side is zero, and we recover Equation 6.9; if I # n, we get

(EY — ENe\™ = —(yP|H'|y0),

or
0 H' 0
C’(’;lr) — ﬁ”nz)l hzn) ’ [6.12]
En - Em
SO
(WO IH'[¢D)
Va = 2 g0 g0y Y [6.13]
men n m

Notice that the denominator is safe (since there is no coefficient with m = n) as
long as the unperturbed energy spectrum is nondegenerate. But if two different
unperturbed states share the same energy, we’re in serious trouble (we divided by
zero to get Equation 6.12); in that case we need degenerate perturbation theory,
which I’ll come to in Section 6.2.

That completes first-order perturbation theory: The first-order correction to
the energy, E,',, is given by Equation 6.9, and the first-order correction to the
wave function, ¥!, is given by Equation 6.13. I should warn you that whereas
perturbation theory often yields surprisingly accurate energies (that is, E,? + Elis

quite close to the exact value E,), the wave functions are notoriously poor.

*Problem 6.1 Suppose we put a delta-function bump in the center of the infinite
square well:

H =ad(x —a/2),
where & is a constant.

(a) Find the first-order correction to the allowed energies. Explain why the ener-
gies are not perturbed for even 2.

(b) Find the first three nonzero terms in the expansion (Equation 6.13) of the
correction to the ground state, 101‘.

«Problem 6.2 For the harmonic oscillator [V (x) = (1 /2)kx2], the allowed ener-
gies are

E,=n+1/Qhw., @=0 1.2, ...),

where w = /k/m is the classical frequency. Now suppose the spring constant
increases slightly: k — (1 4 €)k. (Perhaps we cool the spring, so it becomes less
flexible.)
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(a) Find the exact new energies (trivial, in this case). Expand your formula as a
power series in €, up to second order.

(b) Now calculate the first-order perturbation in the energy, using Equation 6.9.
What is H' here? Compare your result with part (a). Hint: It is not neces-
sary—in fact, it is not permitted —to calculate a single integral in doing this
problem.

Problem 6.3 Two identical bosons are placed in an infinite square well
(Equation 2.19). They interact weakly with one another, via the potential

V(xy, x2) = —aVpd(x; — x2)

(where Vp is a constant with the dimensions of energy, and a is the width of
the well).

(a) First, ignoring the interaction between the particles, find the ground state
and the first excited state—both the wave functions and the associated
energies.

(b) Use first-order perturbation theory to estimate the effect of the particle-
P ry p
particle interaction on the energies of the ground state and the first excited
state.

6.1.3 Second-Order Energies

Proceeding as before, we take the inner product of the second order equation
(Equation 6.8) with ¥*:

WAIH YD) + (W H Yy = EQWL1un) + EXRlu) + EXlly).
Again, we exploit the hermiticity of HY:
WH Y = (H Y lyn) = EQ(yRlyl),

so the first term on the left cancels the first term on the right. Meanwhile,
(Y010 = 1, and we are left with a formula for E2:

E} = (Y2 |H'|¥) — ENY, W) [6.14]

But

¢;1 hbn Z (‘,(,’:) ¢;1 hbm -
m#£n
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(because the sum excludes m = n, and all the others are orthogonal), so

- WO LH W) (WO H'|¢0)
Ey = (WlH' ) = 3 aRlH ) = )~
ms£n m#n n m

or, finally.

e L 7]
E9— EO

m

[6.15]
m#£n

This is the fundamental result of second-order perturbation theory.

We could go on to calculate the second-order correction to the wave func-
tion (2), the third-order correction to the energy, and so on, but in practice
Equation 6.15 is ordinarily as far as it is useful to pursue this method.’

«Problem 6.4

(a) Find the second-order correction to the energies (E,7;) for the potential
in Problem 6.1. Comment: You can sum the series explicitly, obtaining
—2m(er/mhn)? for odd n.

(b) Calculate the second-order correction to the ground state energy (E(Z)) for the
potential in Problem 6.2. Check that your result is consistent with the exact
solution.

* *Problem 6.5 Consider a charged particle in the one-dimensional harmonic oscil-

lator potential. Suppose we turn on a weak electric field (E), so that the potential
energy is shifted by an amount H' = —gEx.

51n the short-hand notation Vion = (11/,(,), IH'I\[/,(,)). Apn = E,(,), - E,(,). the first three corrections
to the nth energy are

2 Vanl® 5 Vi Vi V Vi |2
E’I’ - VHH‘ E;; - Z ”1’1':11 ) E’.’ = Z ”AII]Z;”’::” B V”” Z "';” )
nisn

langn m#n A

The third order correction is given in Landau and Lifschitz, Quantum Mechanics: Non-Relativistic
Theory. 3rd ed., Pergamon. Oxford (1977), page 136: the fourth and fifth orders (together with a
powerful general technique for obtaining the higher orders) are developed by Nicholas Wheeler,
Higher-Order Spectral Perturbation (unpublished Reed College report, 2000). Illuminating alterna-
tive formulations of time-independent perturbation theory include the Delgamo-Lewis method and
the closely related “logarithmic™ perturbation theory (see, for example, T. Imbo and U. Sukhatme.
Am. J. Phys. 52. 140 (1984), for LPT. and H. Mavromatis, Am. J. Phys. 59, 738 (1991), for Delgarno-
Lewis).
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(a) Show that there is no first-order change in the energy levels, and calculate
the second-order correction. Hint: See Problem 3.33.

(b) The Schrédinger equation can be solved directly in this case, by a change of
variables: ¥’ = x — (qE/ mw?). Find the exact energies, and show that they
are consistent with the perturbation theory approximation.

6.2 DEGENERATE PERTURBATION THEORY

If the unperturbed states are degenerate—that is, if two (or more) distinct states
(10‘? and 1”19 ) share the same energy—then ordinary perturbation theory fails: cf,b)
(Equation 6.12) and E> (Equation 6.15) blow up (unless, perhaps, the numerator
vanishes, (¥J|H'|yP) = 0—a loophole that will be important to us later on). In the
degenerate case, therefore, there is no reason to trust even the first-order correction
to the energy (Equation 6.9), and we must look for some other way to handle the

problem.

6.2.1 Two-Fold Degeneracy
Suppose that

HOYQ = E%g.  HWy = E'¥p. (Yalwy) =0, [6.16]
with ¢2 and 101? both nermalized. Note that any linear combination of these states,

vO =y, + By, [6.17]
is still an eigenstate of H?, with the same eigenvalue E°:
HO%% = EO°. [6.18]

Typically, the perturbation (H') will “break” (or “lift”) the degeneracy: As we
increase A (from O to 1), the common unperturbed energy E° splits into two
(Figure 6.4). Going the other direction, when we turmn off the perturbation, the
“upper” state reduces down to one linear combination of ¢2 and wg, and the
“lower” state reduces to some orthogonal linear combination, but we don’t know a
priori what these “good” linear combinations will be. For this reason we can’t even
calculate the first-order energy (Equation 6.9)—we don’t know what unperturbed
states to use.

For the moment, therefore, let’s just write the “good” unperturbed states in
generic form (Equation 6.17), keeping @ and B adjustable. We want to solve the
Schrédinger equation,

Hy = Evy, [6.19]
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E A

FIGURE 6.4: “Lifting” of a degeneracy by a perturbation.

with H = H% + AH’ and
E=E +AE'+X2E* +--, y=y"+ayp' +2%92+....  [620]

Plugging these into Equation 6.19, and collecting like powers of A (as before)
we find

HOYO 40 (HY  + HOY ) + - = EO° + MEYO + E% ) + -
But H%9 = E%0 (Equation 6.18), so the first terms cancel; at order A! we have
Hoy! + H'y® = E%! + E'y°. [6.21]
Taking the inner product with wg:
(WelHY') + (gl H'Y) = E%wglv!) + E' (v lv®).
Because H° is hermitian, the first term on the left cancels the first term on

the right. Putting in Equation 6.17 and exploiting the orthonormality condition
(Equation 6.16), we obtain

a(YOIH W) + BWOIH W) = o E'.

or, more compactly,
aWaa + BWap = ¢E, [6.22]

where
Wi = (W H lYY). . j=a.b). [6.23]
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Similarly, the inner product with 101? yields

a Wy + BWpp = BE'. [6.24]
Notice that the W’s are (in principle) known —they are just the “matrix ele-
ments” of H’, with respect to the unperturbed wave functions ¢3 and w,?. Multi-
plying Equation 6.24 by W,;,, and using Equation 6.22 to eliminate 8 W), we find:
[ Wap Wia — (E' = Waa)(E' = Wpp)] = 0. [6.25]

If « is not zero, Equation 6.25 yields an equation for E':

(EN? — EYN(Wag + Wpp) + (WaaWyp — W Wp,) = 0. [6.26]

Invoking the quadratic formula, and noting (from Equation 6.23) that Wy, = W, ,
we conclude that

1
Eit = E [Waa + Wy T \/(Waa - Wl;b)?' + 4|VVal)|2 :| . [6.27]

This is the fundamental result of degenerate perturbation theory: the two roots
correspond to the two perturbed energies.

But what if « is zero? In that case § = 1, Equation 6.22 says W,, = 0,
and Equation 6.24 gives E! = Wy, This is actually included in the general result
(Equation 6.27), with the minus sign (the plus sign corresponds to o = 1, 8 = 0).
What’s more, the answers,

E\ = Wao = (WOIH'WD), EL =Wy, = (W)IH'I¥]).

are precisely what we would have obtained using nondegenerate perturbation theory
(Equation 6.9). We have simply been [ucky: The states ¢3 and ¢}3 were already
the “good” linear combinations. Obviously, it would be greatly to our advantage
if we could somehow guess the “good’™ states right from the start—then we could
go ahead and use nondegenerate perturbation theory. As it turns out, we can very
often do this by exploiting the following theorem:

Theorem: Let A be a hermitian operator that commutes with H° and H'.

If Wf,’ and w,? (the degenerate eigenfunctions of H) are also eigenfunctions
of A, with distinct eigenvalues,

Ayl = WS. A¢g = m//,?‘ and u # v.
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then W,;, = 0 (and hence w,? and w,? are the “good” states to use in pertur-
bation theory).

Proof: By assumption, [A, H'] =0, so

(W2llA. H'lyd) =0
= (WOIAH'YD) — (WO H' AyY)
= (AY2|H'y) — (WIIH vy
= (1 — VWIH YY) = (u — v)Wap.

But u #v,s0 Wy, =0. QED

Moral: If you’re faced with degenerate states, look around for some hermitian
operator A that commutes with H° and H’; pick as your unperturbed states ones
that are simultaneously eigenfunctions of H? and A. Then use ordinary first-order
perturbation theory. If you can’t find such an operator, you’ll have to resort to
Equation 6.27, but in practice this is seldom necessary.

Problem 6.6 Let the two “good” unperturbed states be
Yi =asvp + Bx¥p.

where o 4 and B4 are determined (up to normalization) by Equation 6.22 (or Equa-
tion 6.24). Show explicitly that

(a) w‘i are orthogonal ((¢9_|w9) = 0);

(b) (WRIH'Iy?) =0
(e) (v IH'|v%) =E., with E), given by Equation 6.27.

Problem 6.7 Consider a particle of mass m that is free to move in a one-dimen-
sional region of length L that closes on itself (for instance, a bead that slides
frictionlessly on a circular wire of circumference L, as in Problem 2.46).

(a) Show that the stationary states can be written in the form

Yn(X) = %ez-"’"-“/k (-L/2 <x < L/2).
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where n =0, 1, 2, ..., and the allowed energies are

2 (mrh)z
En - — - .
m L

Notice that—with the exception of the ground state (n = 0)—these are all
doubly degenerate.

(b) Now suppose we introduce the perturbation
H —= __Voe—xz/az’

where a <« L. (This puts a little “dimple” in the potential at x = 0, as though
we bent the wire slightly to make a “trap.”) Find the first-order correction to
E,, using Equation 6.27. Hint: To evaluate the integrals, exploit the fact that
a <« L to extend the limits from * L/2 to T oo; after all, H' is essentially
zero outside —a < x < a.

(c) What are the “good” linear combinations of v, and _,, for this problem?
Show that with these states you get the first-order correction using
Equation 6.9.

(d) Find a hermitian operator A that fits the requirements of the theorem, and
show that the simultaneous eigenstates of H? and A are precisely the ones
you used in (c).

6.2.2 Higher-Order Degeneracy

In the previous section I assumed the degeneracy was two-fold, but it is easy to
see how the method generalizes. Rewrite Equations 6.22 and 6.24 in matrix form:

Waa Wnb) a) 1 a)
=E . 6.28
(Wha Wi ) \ B B [6.28]
Evidently the E!’s are nothing but the eigenvalues of the W-matrix; Equation 6.26
is the characteristic equation for this matrix, and the “good” linear combinations
of the unperturbed states are the eigenvectors of W.
In the case of n-fold degeneracy, we look for the eigenvalues of the n x n

matrix
Wij = (WP 1H 1Y) [6.29]

In the language of linear algebra, finding the “good” unperturbed wave functions
amounts to constructing a basis in the degenerate subspace that diagonalizes the
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matrix W. Once again, if you can think of an operator A that commutes with H’,
and use the simultaneous eigenfunctions of A and H°, then the W matrix will
automatically be diagonal, and you won’t have to fuss with solving the charac-
teristic equation.® (If you’re nervous about my casual generalization from 2-fold
degeneracy to n-fold degeneracy, work Problem 6.10.)

Example 6.2 Consider the three-dimensional infinite cubical well (Problem 4.2):

0, ifO<x .0 1. and 0 < 2 ;
V. =12 if <.\ <a.0<yv<a. an <z<a. (6.30]
oo otherwise.

The stationary states are

2\*? 7T nyIT -
w,? aon. Xy 2) = (—) sin ("‘—\‘) sin (—‘——») sin (’—1—“23) . [6.31]
REAR A a

a a a

where ny, ny, and n. are positive integers. The corresponding allowed energies are

24,2
0 _ n-h 2 2 2 ,
Ennon: = 2ma? (ny +ny +n3). [6.32]

Notice that the ground state (11;]) is nondegenerate; its energy is

ﬂth
E =3 . 6.33
0 2ma? [6.33]
But the first excited state is (triply) degenerate:
Vo = Y112 ¥p = Y21, and ¥ = Yoy, [6.34]
all share the same energy
242
k-
EY) =3—. [6.35]
ma
Now let’s introduce the perturbation
H - W. if0<x<a/2and0 <y <a/2: [6.36]

0. otherwise.

ODegenerate perturbation theory amounts to diagonalization of the degenerate part of the Hamil-
tonian. The diagonalization of matrices (and simultancous diagonalizability of commuting matrices) is
discussed in the Appendix (Section A.5).
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FIGURE 6.5: The perturbation increases the potential by an amount Vj in the shaded
sector.

This raises the potential by an amount Vjy in one quarter of the box (see Figure 6.5).
The first-order correction to the ground state energy is given by Equation 6.9:

E) = (Y| H' |Yrin)
2\’ a2 L m a2 L m TS 4
= (;) Vo/(; sin (;x) dx/(; sin (;y) d_v/(; sin (;z) dz
1
= -Vo, 6.3
170 [6.37]

which is pretty much what we would expect.

For the first excited state we need the full machinery of degenerate perturbation
theory. The first step is to construct the matrix W. The diagonal elements are the
same as for the ground state (except that the argument of one of the sines is
doubled); you can check for yourself that

1
Waa = Wl)l) = ch = ZVO-

The off-diagonal elements are more interesting:

) 3 aj
Wab = (-—) Vof Sil’l2 (E‘\') dx
a 0 a
a/? 2 u 2
X f sin (Zy) sin (—Ey> d_\,*f sin (—J—T—z> sin (zz) dz.
0 a a 0 a a
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But the z integral is zero (as it will be also for W), so
Wap = Wye = 0.
Finally,

2 3 a/2 2
Wi = (—) Vof sin (zx) sin (_n\) dx
a 0 a a
a/l2 (2 LT S 1 16
x/(; sin (7\:) sin (;\) dy/(; sin” (;z) dz = WVO'

Thus
Vo 1 0 O
W:T 0 1 « [6.38]
0 « 1

where k = (8/3m)* =~ 0.7205.
The characteristic equation for W (or rather, for 4W/Vy, which is easier to
work with) is

(1 —w)? —«?*(1 —w) =0.
and the eigenvalues are
wi=1, wa=14+=1705 w3y=1-x=0.2795.
To first order in A, then,
E? + AVp/4,
E\(\) = { EY+ A(1 + ) Vp/4. [6.39]
EY + (1 — k) Vp/4.
where E(l) is the (common) unperturbed energy (Equation 6.35). The perturbation
lifts the degeneracy, splitting E? into three distinct energy levels (see Figure 6.6).
Notice that if we had naively applied nondegenerate perturbation theory to this
problem, we would have concluded that the first-order correction (Equation 6.9) is
the same for all three states, and equal to Vp/4—which is actually correct only for

the middle state.
Meanwhile, the “good” unperturbed states are linear combinations of the form

¥0 = av, + BYp + ¥ e [6.40]

where the coefficients («, B, and y) form the eigenvectors of the matrix W:

1 00 o o
0 I « Bl=w|§B
0 « 1 y y
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I >

y and

1 A

FIGURE 6.6: Lifting of the degeneracy in Example 6.2 (Equation 6.39).

Forw=1lwegeta=1,8=y=0;forw=1Txkwegeta=08==Ty=
1/+/2. (I normalized them as I went along.) Thus the “good” states are’

Va.
¥0 = (W + o) /2, [6.41]
(Vb — Ye) /2.

Problem 6.8 Suppose we perturb the infinite cubical well (Equation 6.30) by
putting a delta function “bump” at the point (a/4. a/2,3a/4):

H =a*Vod(x —a/8)8(y — a/2)8(z — 3a/4).

Find the first-order corrections to the energy of the ground state and the (triply
degenerate) first excited states.

TWe might have guessed this result right from the start by noting that the operator Pyy. which
interchanges x and ¥, commutes with H'. Its eigenvalues are +1 (for functions that are even under the
interchange), and —1 (for functions that are odd). In this case ¥, is already even. (Y, + ¥) is even,
and (Y, — ¥.) is odd. This is not quite conclusive, since any linear combination of the even states
would still be even. But if we also use the operator Q. which takes z to ¢ — z, and note that ¥, is
an eigenfunction with eigenvalue —1, whereas the other two are eigenfunctions with eigenvalue +1,
the ambiguity is resolved. Here the operators Pyy and Q together play the role of A in the theorem of
Section 6.2.1.
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*Problem 6.9 Consider a quantum system with just three linearly independent
states. Suppose the Hamiltonian, in matrix form, is

1—-¢) 0 O
H=1V, 0 1 €
0 € 2

where Vj is a constant, and ¢ is some small number (¢ < 1).

(a) Write down the eigenvectors and eigenvalues of the unpertiurbed Hamiltonian
(e =0).
(b) Solve for the exact eigenvalues of H. Expand each of them as a power series

in €, up to second order.

(c) Use first- and second-order nondegenerate perturbation theory to find the
approximate eigenvalue for the state that grows out of the nondegenerate
eigenvector of H 0. Compare the exact result, from (a).

(d) Use degenerate perturbation theory to find the first-order correction to the
two initially degenerate eigenvalues. Compare the exact results.

Problem 6.10 In the text I asserted that the first-order corrections to an n-fold
degenerate energy are the eigenvalues of the W matrix, and I justified this claim as
the “natural” generalization of the case n = 2. Prove it, by reproducing the steps
in Section 6.2.1, starting with

n
0 § : 0
T.b = 0{1101
j=!

(generalizing Equation 6.17), and ending by showing that the analog to
Equation 6.22 can be interpreted as the eigenvalue equation for the matrix W.

6.3 THE FINE STRUCTURE OF HYDROGEN

In our study of the hydrogen atom (Section 4.2) we took the Hamiltonian to be

rl 2
(- LA [6.42]

H=——
2m deg r

(electron kinetic energy plus coulombic potential energy). But this is not quite
the whole story. We have already learned how to correct for the motion of the

e
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TABLE 6.1: Hierarchy of corrections to the
Bohr energies of hydrogen.

Bohr energies:  of order o?mc?
Fine structure; of order ofmc?
Lamb shift: of order @ mc?

Hyperfine splitting:  of order  (m/mj)ar*mc?

nucleus: Just replace m by the reduced mass (Problem 5.1). More significant is
the so-called fine structure, which is actually due to two distinct mechanisms: a

relativistic correction, and spin-orbit coupling. Compared to the Bohr energies
(Equation 4.70), fine structure is a tiny perturbation—smaller by a factor of a2,

where )
e 1
= 6.43
*= dreohc — 137.036 [6.43]

is the famous fine structure constant. Smaller still (by another factor of «) is the
Lamb shift, associated with the quantization of the electric field, and smaller by
yet another order of magnitude is the hyperfine structure, which is due to the
magnetic interaction between the dipole moments of the electron and the proton.
This hierarchy is summarized in Table 6.1. In the present section we will analyze
the fine structure of hydrogen, as an application of time-independent perturbation
theory.

Problem 6.11

(a) Express the Bohr energies in terms of the fine structure constant and the rest
energy (mc?) of the electron.

(b) Calculate the fine structure constant from first principles (i.e., without recourse
to the empirical values of €y, e, /i, and ¢). Comment: The fine structure con-
stant is undoubtedly the most fundamental pure (dimensionless) number in all
of physics. It relates the basic constants of electromagnetism (the charge of
the electron), relativity (the speed of light), and quantum mechanics (Planck’s
constant). If you can solve part (b), you have the most certain Nobel Prize
in history waiting for you. But I wouldn’t recommend spending a lot of time
on it right now; many smart people have tried, and all (so far) have failed.

6.3.1 The Relativistic Correction

The first term in the Hamiltonian is supposed to represent kinetic energy:

T = Emv' = — [6.44]
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and the canonical substitution p — (4/i)V yields the operator

h?
T =-—V-. [6.45]
2m
But Equation 6.44 is the classical expression for kinetic energy; the relativistic
formula is ,
T = L me?. [6.46]

V1= (/o)?

The first term is the rotal relativistic energy (not counting potential energy,
which we aren’t concerned with at the moment), and the second term is the rest
energy—the difference is the energy attributable to motion.

We need to express T in terms of the (relativistic) momentum,

p= L [6.47]

J1— w/c)?

instead of velocity. Notice that

4 m2v2c? + mzc"‘[l - (v/c)z] _ mct
- 1 —(v/c)? 1—(v/e)?

T =/ p2c2 + m2c* — mc?. [6.48]

This relativistic equation for kinetic energy reduces (of course) to the classical
result (Equation 6.44), in the nonrelativistic limit p <« mc; expanding in powers
of the small number (p/mc), we have :

T = mc? ]+(%)2—1 =771cz[1+%(ﬁ>2—é(%>4..._1]

=(T +mcz)2.

2 2 2
p ¢t +mc

SO

p2 p4
S S 6.49
2m  8m3c? [6.49]

The lowest-order® relativistic correction to the Hamiltonian is evidently
4
p

H =—-———. 6.50
d 8m3c2 [6.50]

8The kinetic energy of the electron in hydrogen is on the order of 10 eV. which is miniscule
compared to its rest energy (511.000 eV), so the hydrogen atom is basically nonrelativistic. and we
can afford to keep only the lowest-order correction. In Equation 6.49. p is the relativistic momentum
(Equation 6.47), nor the classical momentum mv. It is the former that we now associate with the
quantum operator —ihV, in Equation 6.50.
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In first-order perturbation theory, the correction to E, is given by the expec-
tation value of H’ in the unperturbed state (Equation 6.9):

1
8m3c?

El = (H) = (P*W|p*Y). [6.51]

! !

4 - ].
(lp™y) = 2

m3¢?

Now, the Schrodinger equation (for the unperturbed states) says

P>y =2m(E — V), [6.52]
and hence?®
1 1
El= - —S((E-V)})) = ——[E?> - 2E(V) + (V})]. [6.53]
2mc* 2mc*

So far this is entirely general; but we’re interested in hydrogen, for which V(r) =
—(1/4meg)e?/r:

1 &2 1 &2 2 1
El=—— | E}42E, | — ) (= N 6.54
r 2me2 | " +ZEn (47T€0> <">+ (4”60) <"2>:| [ :

where E, is the Bohr energy of the state in question.
To complete the job, we need the expectation values of 1/r and 1/r?, in the
(unperturbed) state ,;,,, (Equation 4.2.1). The first is easy (see Problem 6.12):

(1)= 6.55)

r n2a’

where a is the Bohr radius (Equation 4.72). The second is not so simple to derive
(see Problem 6.33), but the answer is!'?

1 1 |
<’—7> Sy T [6.56]

It follows that

1 ) et \ 1 et \° 1
El=——— _|E242E, | — ) —=— .
! 2me? | " + &L (47teo> n2a + (47teo> I+ 1/2);13a2:|

9There is some sleight-of-hand in this maneuver, which exploits the hermiticity of p? and of
(E — V). In truth, the operator 174 is nor hermitian for states with / = 0 (see Problem 6.15), and
the applicability of perturbation theory to Equation 6.50 is therefore called into question (for the case
I = 0). Fortunately. the exact solution is available; it can be obtained by using the (relativistic) Dirac
equation in place of the (nonrelativistic) Schrodinger equation, and it confirms the results we obtain
here by less rigorous means (see Problem 6.19).

10T he general formula for the expectation value of any power of r is given in Hans A. Bethe and

Edwin E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Plenum, New York (1977),
p. 17.
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or, eliminating a (using Equation 4.72) and expressing everything in terms of E,
(using Equation 4.70):

(E)* [ 4n
E! = — — 3. 5
’ 2mc? [l+ 1/2 3] [6.57]

Evidently the relativistic correction is smaller than E,, by a factor of about
E,/mc? =2 x 1073,

You might have noticed that I used nondegenerate perturbation theory in this
calculation (Equation 6.51), in spite of the fact that the hydrogen atom is highly
degenerate. But the perturbation is spherically symmetrical, so it commutes with
L? and L.. Moreover, the eigenfunctions of these operators (taken together) have
distinct eigenvalues for the n? states with a given E,. Luckily, then, the wave
functions Y, are the “good” states for this problem (or, as we say, n, /, and
m are the good quantum numbers), so as it happens the use of nondegenerate
perturbation theory was legitimate (see the “Moral” to Section 6.2.1).

*Problem 6.12 Use the virial theorem (Problem 4.40) to prove Equation 6.55.

Problem 6.13 In Problem 4.43 you calculated the expectation value of r¥ in the
state Yr3p;. Check your answer for the special cases s = 0 (trivial), s = —1
(Equation 6.55), s = —2 (Equation 6.56), and s = —3 (Equation 6.64). Comment
on the case s = —7.

* xProblem 6.14 Find the (lowest-order) relativistic correction to the energy levels of

the one-dimensional harmonic oscillator. Hint: Use the technique in Example 2.5.

% % xProblem 6.15 Show that p? is hermitian, but p* is not, for hydrogen states with

I = 0. Hint: For such states i is independent of 6 and ¢, so

2 h*d (,d
p= r2dr ’dr

(Equation 4.13). Using integration by parts, show that

, df
(Flplg) = —4nh? (rz. 8 _ 2,9
dr dr

o0

+ (P’ flg).
0

Check that the boundary term vanishes for 1,09, which goes like

1
Ynoo ~ W exp(—r/na)
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near the origin. Now do the same for p*, and show that the boundary terms do not
vanish. In fact:

i (n—m)

4
a_4 W + (P V00! ¥im00)-

(¥rmo0l p*¥rmoo) =

6.3.2 Spin-Orbit Coupling

Imagine the electron in orbit around the nucleus; from the electron’s point of view,
the proton is circling around it (Figure 6.7). This orbiting positive charge sets up
a magnetic field B, in the electron frame, which exerts a torque on the spinning
electron, tending to align its magnetic moment (u) along the direction of the field.
The Hamiltonian (Equation 4.157) is

To begin with, we need to figure out the magnetic field of the proton (B) and the
dipole moment of the electron (u).

The magnetic field of the proton. If we picture the proton (from the elec-
tron’s perspective) as a continuous current loop (Figure 6.7), its magnetic field can
be calculated from the Biot-Savart law:

=kl
2r
with an effective current I = e¢/T, where e is the charge of the proton and T is
the period of the orbit. On the other hand, the orbital angular momentum of the
electron (in the rest frame of the nucleus) is L = rmv = 2mwmr> /T. Moreover, B
and L point in the same direction (up, in Figure 6.7), so
1 e

B = 3 [6.59]

4meg mc3r

(I used ¢ = 1/, /epup to eliminate wqg in favor of €g.)

B,LA

——+ FIGURE 6.7: Hydrogen atom, from the
+e electron’s perspective.
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The magnetic dipole moment of the electron. The magnetic dipole moment
of a spinning charge is related to its (spin) angular momentum; the proportionality
factor is the gyromagnetic ratio (which we already encountered in Section 4.4.2).
Let’s derive it, this time, using classical electrodynamics. Consider first a charge
¢ smeared out around a ring of radius r, which rotates about the axis with period
T (Figure 6.8). The magnetic dipole moment of the ring is defined as the current
(q/T) times the area (7r2):

)
_qn'l"'
=77

If the mass of the ring is m, its angular momentum is the moment of inertia (mr?)
times the angular velocity 27 /T):

2mmr?
T

The gyromagnetic ratio for this configuration is evidently u/S = g/2m. Notice
that it is independent of » (and T). If I had some more complicated object, such
as a sphere (all I require is that it be a figure of revolution, rotating about its
axis), I could calculate p and S by chopping it into little rings, and adding up
their contributions. As long as the mass and the charge are distributed in the same
manner (so that the charge-to-mass ratio is uniform), the gyromagnetic ratio will
be the same for each ring, and hence also for the object as a whole. Moreover, the
directions of g and S are the same (or opposite, if the charge is negative), so

= (E)s

That was a purely classical calculation, however; as it turns out the electron’s
magnetic moment is rwice the classical value:

n,=-<s. [6.60]

m

w, SA

£
-

q.m
FIGURE 6.8: A ring of charge, rotating
about its axis.
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The “extra” factor of 2 was explained by Dirac, in his relativistic theory of the
electron.!!
Putting all this together, we have

,
e’ 1
H = S-L.
(47teo> m2c?r3

But there is a serious fraud in this calculation: I did the analysis in the rest frame
of the electron, but that’s nor an inertial system—it accelerates, as the electron
orbits around the nucleus. You can get away with this if you make an appropriate
kinematic correction, known as the Thomas precession.!? In this context it throws

in a factor of 1/2:13
,
e 1
H = S.L. 6.61

S0 (871’60) m2c?r3 [6.61]

This is the spin-orbit interaction; apart from two corrections (the modified gyro-
magnetic ratio for the electron and the Thomas precession factor—which, coinci-
dentally, exactly cancel one another) it is just what you would expect on the basis
of a naive classical model. Physically, it is due to the torque exerted on the mag-
netic dipole moment of the spinning electron, by the magnetic field of the proton,
in the electron’s instantaneous rest frame.

Now the quantum mechanics. In the presence of spin-orbit coupling, the
Hamiltonian no longer commutes with L. and S, so the spin and orbital angu-
lar momenta are not separately conserved (see Problem 6.16). However, H, does
commute with L2, $ and the troral angular momentum

J=L+8, [6.62]

''We have already noted that it can be dangerous to picture the electron as a spinning sphere (see
Problem 4.25), and it is not too surprising that the naive classical model gets the gyromagnetic ratio
wrong. The deviation from the classical expectation is known as the g-factor: 4 = g(¢/2m)S. Thus
the g-factor of the electron. in Dirac’s theory, is exactly 2. But quantum electrodynamics reveals tiny
corrections to this: g, is actually 2+ (o/m)+... = 2.002.... The calculation and measurement (which
agree to exquisite precision) of the so-called anomalous magnetic moment of the electron were among
the greatest achievements of twenticth-century physics.

'20ne way of thinking of it is that the electron i$ continually stepping from one inertial system to
another; Thomas precession amounts to the cumulative effect of all these Lorentz transformations. We
could avoid the whole problem. of course, by staying in the lab frame, in which the nucleus is at rest.
In that case the ficld of the proton is purely electric. and you might wonder why it exerts any torque
on the electron. Well, the fact is that a moving magnetic dipole acquires an electric dipole moment,
and in the lab frame the spin-orbit coupling is due to the interaction of the electric ficld of the nucleus
with the electric dipole moment of the electron. Because this analysis requires more sophisticated
electrodynamics, it seems best to adopt the electron’s perspective, where the physical mechanism is
more transparent.

3More precisely. Thomas precession subtracts 1 from the g factor. See R.R. Haar and
L. J. Curtis, Am. J. Phys., 55, 1044 (1987).
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and hence these quantities are conserved (Equation 3.71). To put it another way,
the eigenstates of L- and S- are not “good” states to use in perturbation theory,
but the eigenstates of L2, §2, J2, and J; are. Now

JP=(L+S)-(L+8S)=L*+8§*+2L-S,

SO 1
L-S= 5(JZ — L2 - 8%, [6.63]

and therefore the eigenvalues of L - S are

2

K2
I?[j(j + 1) =1+ 1) = s(s + D].

In this case, of course, s = 1/2. Meanwhile, the expectation value of 1/ r3 (see
Problem 6.35(c)) is

I = : [6.64]
P31+ 1/2)( + Dna®’ '
and we conclude that

e 1 (R/DLG+D—10+1)—3/4]
8meg m2¢? [+ 1/2)( + Dn3ad

E. = (H.)=

50

or, expressing it all in terms of E, 14

L (B2 {n[j(j +1) =10+ 1)~ 3/4] } [6.65]

E. =
" mc? Id+1/2(0+ 1)

It i1s remarkable, considering the totally different physical mechanisms
involved, that the relativistic correction and the spin-orbit coupling are of the same
order (E 3/ mc?). Adding them together, we get the complete fine-structure formula
(see Problem 6.17):

2
gl = En) (3 - J"—) . [6.66]

40Once again. the case / = 0 is problematic. since we arc ostensibly dividing by zero. On the
other hand, the numerator is also zero. since in this case j = s. so Equation 6.65 is indeterminate.
On physical grounds there shouldn’t be any spin-orbit coupling when 7 = 0. One way to resolve the
ambiguity is to introduce the so-called Darwin term (sce. for instance, G. K. Woodgate, Elementary
Atomic Structure, 2nd ed.. Oxford (1983). p. 63). Serendipitously, even though both the relativistic
correction (Equation 6.57) and the spin-orbit coupling (Equation 6.65) are questionable in the case
I = 0. their sum (Equation 6.66) is correct for all I (sce Problem 6.19).
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n=1 \
—_— j=1/2

1=0 =1 1=2 1=3
(S) (P) (D) (F)

FIGURE 6.9: Energy levels of hydrogen, including fine structure (not to scale).

Combining this with the Bohr formula, we obtain the grand result for the energy
levels of hydrogen, with fine structure included:

13.6eV o? n 3
Ej=——7—I|14+4+—5|—=—-)]- 6.67
M n? [ T n2 (j +1/2 4)] [6.67]

Fine structure breaks the degeneracy in / (that is, for a given n, the different
allowed values of I do not all carry the same energy), but it still preserves degener-
acy in j (see Figure 6.9). The z-component eigenvalues for orbital and spin angular
momentum (7; and m,) are no longer “good” quantum numbers—the stationary
states are linear combinations of states with different values of these quantities; the
“good” quantum numbers are 1, I, 5, j, and ;.13

I5To write {im;) (for given I and s) as a linear combination of |/ my}|sms) we would use the
appropriate Clebsch-Gordan coefficients (Equation 4.185).
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Problem 6.16 Evaluate the following commutators: (a) [L-S, L], (b) [L-S,S],
@© [L-S,J1, () [L-S,L?, (e) [L-S, $?], (f) [L.-S. J?]. Hint: L and $ satisfy
the fundamental commutation relations for angular momentum (Equations 4.99
and 4.134), but they commute with each other.

xProblem 6.17 Derive the fine structure formula (Equation 6.66) from the relativis-

tic correction (Equation 6.57) and the spin-orbit coupling (Equation 6.65). Hint:
Note that j = & 1/2; treat the plus sign and the minus sign separately, and you’ll
find that you get the same final answer either way.

* *Problem 6.18 The most prominent feature of the hydrogen spectrum in the visible

region is the red Balmer line, coming from the transition n = 3 to n = 2. First of all,
determine the wavelength and frequency of this line according to the Bohr theory.
Fine structure splits this line into several closely spaced lines; the question is: How
many, and what is their spacing? Hint: First determine how many sublevels the
n = 2 level splits into, and find Ef‘s for each of these, in eV. Then do the same for
n = 3. Draw an energy level diagram showing all possible transitions from n = 3
to n = 2. The energy released (in the form of a photon) is (E3— E»)+ AE, the first
part being common to all of them, and the AE (due to fine structure) varying from
one transition to the next. Find AE (in eV) for each transition. Finally, convert
to photon frequency, and determine the spacing between adjacent spectral lines (in
Hz)—not the frequency interval between each line and the unperturbed line (which
is, of course, unobservable), but the frequency interval between each line and the
next one. Your final answer should take the form: “The red Balmer line splits into
(?277) lines. In order of increasing frequency, they come from the transitions (1)
J=MMtoj=@,12) =" toj=(77),.... The frequency spacing
between line (1) and line (2) is (?7?7) Hz, the spacing between line (2) and line (3)
is (777 Hz, ... ."

Problem 6.19 The exact fine-structure formula for hydrogen (obtained from the
Dirac equation without recourse to perturbation theory) is'

~1/2

2
E, = mc? 1+ | i = - -1
n—G+1/2)+V(+1/2)2 —a?

Expand to order a* (noting that & « 1), and show that you recover Equation 6.67.

16Bethe and Salpeter (footnote 10). page 238,



Section 6.4: The Zeeman Effect 277

6.4 THE ZEEMAN EFFECT

When an atom is placed in a uniform external magnetic field B.y, the energy levels
are shifted. This phenomenon is known as the Zeeman effect. For a single electron,
the perturbation is

Hé = _(ILI + ”'.v) * Bext, [6-68]

where

po=-<s [6.69]
m

is the magnetic dipole moment associated with electron spin, and

4

——L 6.70
2m [ ]

=
is the dipole moment associated with orbital motion.!” Thus
H} = — (L + 2S) - Bex.. [6.71]
2m

The nature of the Zeeman splitting depends critically on the strength of the
external field in comparison with the internal field (Equation 6.59) that gives rise
to spin-orbit coupling. If B.x; < Bijn, then fine structure dominates, and H’Z can
be treated as a small perturbation, whereas if Bey; 3> By, then the Zeeman effect
dominates, and fine structure becomes the perturbation. In the intermediate zone,
where the two fields are comparable, we need the full machinery of degenerate
perturbation theory, and it is necessary to diagonalize the relevant portion of the
Hamiltonian “by hand.” In the following sections we shall explore each of these
regimes briefly, for the case of hydrogen.

Problem 6.20 Use Equation 6.59 to estimate the internal field in hydrogen, and
characterize quantitatively a *‘strong” and “weak”™ Zeeman field.

6.4.1 Weak-Field Zeeman Effect

If Bexy < Bin, fine structure dominates (Equation 6.67); the “‘good” quantum
numbers are n, /, j, and m; (but not m; and m,, because—in the presence of spin-
orbit coupling—L and S are not separately conserved).!® In first-order perturbation

7 The gyromagnetic ratio for orbital motion is just the classical value (¢/2m)—it is only for
spin that there is an “extra” factor of 2.

131n this problem we have a perturbation (Zeeman splitting) piled on top of a perturbation (fine
structure). The “good™ quantum numbers are those appropriate to the dominant perturbation—in this
case the fine structure. The secondary perturbation (Zeeman splitting) lifts the remaining degencracy in
J-. which plays here the role of the operator A in the theorem of Section 6.2.1. Technically. J- does
not commute with H} but it does in the time average sense of Equation 6.73.
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FIGURE 6.10: In the presence of spin-orbit cou-
pling, L and S are not separately conserved; they
precess about the fixed total angular momentum, J.

theory, the Zeeman correction to the energy is
EL = (ljm ;|H}Inljm ;) = %Bw (L +2S). 6.72]
. -

Now L + 28 = J + 8. Unfortunately, we do not immediately know the expectation
value of S. But we can figure it out, as follows: The total angular momentum
J = L + S is constant (Figure 6.10); L and S precess rapidly about this fixed
vector. In particular, the (time) average value of S is just its projection along J:

S.
( J)J'

Ve [6.73]

Save=
ButL=J—S,s0 L?=J%+482—2J-8, and hence
| L
S.-J= 5(1* + 85 - L) = ?[.;(,; + D +ss+ D=1+ DI [6.74]

from which it follows that

S~J> > [ iG+D =10+ 1)+3/4] |
L+2S)={([1+ J)=|14= — . [675
( ! <( J? 2j(j+ 1 ). 167]
The term in square brackets is known as the Landé g-factor, g;.
We may as well choose the z-axis to lie along Bey,: then

E} = upgsBeum,;. [6.76]
where

eh _s

Up = o= 5.788 x 107° eV/T [6.77]
m

is the so-called Bohr magneton. The roral energy is the sum of the fine-structure
part (Equation 6.67) and the Zeeman contribution (Equation 6.76). For example,
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the ground state (n = 1,/ = 0, j = 1/2, and therefore g; = 2) splits into two
levels:
—13.6 eV(l + a?/4) T upBex, [6.78]

with the plus sign for m; = 1/2, and minus for m; = —1/2. These energies are
plotted (as functions of Bgy) in Figure 6.11.

*xProblem 6.21 Consider the (eight) n = 2 states, |2/jm ). Find the energy of each
state, under weak-field Zeeman splitting, and construct a diagram like Figure 6.11
to show how the energies evolve as Bgy increases. Label each line clearly, and
indicate its slope.

6.4.2 Strong-Field Zeeman Effect

If Bext 3> Bint, the Zeeman effect dominates;'? with Bey in the z direction, the
“good” quantum numbers are now n, [, my, and my (but not j and m; because—in
the presence of the external torque —the total angular momentum is not conserved,
whereas L. and S. are). The Zeeman Hamiltonian is

e
H, = — Bey(L-+25.).
z= o ext(Lz +28;)

E
UBgext

s

-13.6 (1 + 02/4) eV

m] = -1/2

FIGURE 6.11: Weak-field Zeeman splitting of the ground state of hydrogen; the
upper line (m; = 1/2) has slope 1, the lower line (#; = —1/2) has slope —1.

191n this regime the Zeeman effeet is also known as the Paschen-Back effect.
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and the “unperturbed” energies are

13.6 eV
Enm;m_y = - 5 + uBBexi(my + 2my). [6.79]

n=

That’s the answer, if we ignore fine structure completely. But we can do better.
In first-order perturbation theory the fine-structure correction to these levels is

E[!S = (nl m;mg|(H, + H.)|nl mymy). [6.80]

The relativistic contribution is the same as before (Equation 6.57); for the spin-orbit
term (Equation 6.61) we need

(S L) = (SLy) + (SyHLy) + (SHLy) = Klmym, [6.81]

(note that (S.) = (Sy) = (L) = (L,) = O for eigenstates of S; and L_). Putting
all this together (Problem 6.22), we conclude that

13.6 eVaz{ 3 [1(1 + 1) — mym; ]}

El = — -
fs n3 an o LI0+1/D0+1)

[6.82]

(The term in square brackets is indeterminate for / = 0; its correct value in this
case is 1—see Problem 6.24.) The rotal energy is the sum of the Zeeman part
(Equation 6.79) and the fine structure contribution (Equation 6.82).

Problem 6.22 Starting with Equation 6.80, and using Equations 6.57, 6.61, 6.64,
and 6.81, derive Equation 6.82.

* xProblem 6.23 Consider the (eight) n = 2 states, |2/ m; m,). Find the energy of

each state, under strong-field Zeeman splitting. Express each answer as the sum of
three terms: the Bohr energy, the fine-structure (proportional to a?), and the Zeeman
contribution (proportional to u g Bey). If you ignore fine structure altogether, how
many distinct levels are there, and what are their degeneracies?

Problem 6.24 If | =0, then j = s, mj = my, and the “good” states are the same
(|n my)) for weak and strong fields. Determine E IZ (from Equation 6.72) and the
fine structure energies (Equation 6.67), and write down the general result for the
| = 0 Zeeman effect—regardless of the strength of the field. Show that the strong-
field formula (Equation 6.82) reproduces this result, provided that we interpret the
indeterminate term in square brackets as 1.




Section 6.4: The Zeeman Effect 281

6.4.3 Intermediate-Field Zeeman Effect

In the intermediate regime neither H, /, nor H dominates, and we must treat the
two on an equal footing, as perturbatlom to the Bohr Hamiltonian (Equation 6.42):

T’ll confine my attention here to the case n = 2, and use as the basis for degen-
erate perturbation theory the states characterized by /, j, and m j.zo Using the
Clebsch-Gordan coefficients (Problem 4.51 or Table 4.8) to express |jm;) as a
linear combination of |l m;)|s my), we have:

[ Y1=1(33) =100)33).

[ =0
| Y2 =133 =100)]5 3).
(Ys=133) =113
va=133 =11 -1z 3F)
1 “Wszl'%%) =V27311013 3 + VIBI1)5 3,

L o ==vianol h + V27310155,
=133 =VIBIL-DIE D+ v2BI10) S,
L ys =13 3 = —V27311 =13 1) + VIBIL0)L 5.

In this basis the nonzero matrix elements of H are all on the diagonal,
and given by Equation 6.66; H has four off-diagonal elements, and the complete
matrix —W is (see Problem 6.25):

5y—-8 0 0 0 0 0 0 0 \
0 Sy+B8 O 0 0 0 0 0

0 0 y—28 0 0 0 0 0

0 0 0 y+28 0 0 0 0

0 0 0 0 y-3ip L 0 0

0 0 0 0 2B Sy—18 O 0

0 0 0 0 0 0 y+i8 ¥Lp
\ 0 0 0 0 0 0 Zp sy+ip)

20¥ou can use /, my. my states if you prefer—this makes the matrix elements of H'Z easier, but
those of Hrfs more difficult; the W matrix will be more complicated, but its eigenvalues (which are
independent of basis) are the same either way.
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where
y = (2/8)*13.6 eV and B = upBex.

The first four eigenvalues are already displayed along the diagonal; it remains only
to find the eigenvalues of the two 2 x 2 blocks. The characteristic equation for the
first of these is

2 b) 11
AT — A6y —B)+ (5)/' - ?Vﬁ> =0,

and the quadratic formula gives the eigenvalues:

Ai = =3y + (B/2) T \Jay2 + 2/3)vB + (BY/4). [6.84]

The eigenvalues of the second block are the same, but with the sign of 8 reversed.
The eight energies are listed in Table 6.2, and plotted against By, in Figure 6.12.
In the zero-field limit (8 = 0) they reduce to the fine-structure values; for weak
fields (B « y) they reproduce what you got in Problem 6.21; for strong fields
(B > y) we recover the results of Problem 6.23 (note the convergence to five
distinct energy levels, at very high fields, as predicted in Problem 6.23).

EA

Weak—Intermediate—Strong —>

18Bext

FIGURE 6.12: Zeeman splitting of the n = 2 states of hydrogen, in the weak,
intermediate, and strong field regimes.
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TABLE 6.2: Energy levels for the n = 2 states of
hydrogen, with fine structure and Zeeman splitting.

€ = Ey-Sy+p
€& = E;-5y-§
€, = EZ —-y+ 2,3
¢ = Ey-y-28
€5 = Er—3y+pR2+V4y+ (213)yB + B4
€ = Ex—3y+p2—Nay +Q23)yB+ pY4
€& = E,—3y—pBR+N4y2—(2/3)yB+ g4
€ = E>—3y—pr—N4y>—(2/3)yB+ B4

Problem 6.25 Work out the matrix elements of H; and H[fs, and construct the
W-matrix given in the text, for n = 2.

* % xProblem 6.26 Analyze the Zeeman effect for the n = 3 states of hydrogen, in the
weak, strong, and intermediate field regimes. Construct a table of energies (analo-
gous to Table 6.2), plot them as functions of the external field (as in Figure 6.12),
and check that the intermediate-field results reduce properly in the two limiting
cases.

6.5 HYPERFINE SPLITTING

The proton itself constitutes a magnetic dipole, though its dipole moment is much
smaller than the electron’s because of the mass in the denominator (Equation 6.60):

aneé €
R ada o5

K’y
(The proton is a composite structure, made up of three quarks, and its gyromagnetic
ratio is not as simple as the electron’s—hence the explicit g-factor (g,), whose
measured value is 5.59, as opposed to 2.00 for the electron.) According to classical
electrodynamics, a dipole g sets up a magnetic field?!

. 2
B= L3k P — ]+ 2o ps . [6.36]
4mr- 3

211f you are unfamiliar with the delta function term in Equation 6.86. you can derive it by treating
the dipole as a spinning charged spherical shell. in the limit as the radius goes to zero and the charge
goes to infinity (with g held constant). See D, J. Griffiths. Am. J. Phys.. 50, 698 (1982),
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So the Hamiltonian of the electron, in the magnetic field due to the proton’s mag-
netic dipole moment, is (Equation 6.58)

liogpe“ [3S, - F)Se-7) =S, - S,] MOqlJe
8mm pm, r3 3m piMe

H] = S,-S.8%(r). [6.87]

According to perturbation theory, the first-order correction to the energy
(Equation 6.9) is the expectation value of the perturbing Hamiltonian:

El — Mngez 3(Sp F)(Se - F) — Sp - Se
b = 87Tmpme r3
[6.88]
£ B0 g SO,
3mpm,

In the ground state (or any other state for which / = 0) the wave function is spher-
ically symmetrical, and the first expectation value vanishes (see Problem 6.27).
Meanwhile, from Equation 4.80 we find that h[/l()()(_O)I2 = 1/(ma®), so

El — M’ngez

= e P" g .S, 6.89
hf 37Tmpmea3< p-Se) [6.85]

in the ground state. This is called spin-spin coupling, because it involves the dot
product of two spins (contrast spin-orbit coupling, which involves S - L).

In the presence of spin-spin coupling, the individual spin angular momenta
are no longer conserved; the “good” states are eigenvectors of the rotal spin,

S=S,+8S,. [6.90]

As before, we square this out to get
1
S, S, = 5(sl—s;?-—sl’-,). [6.91]

But the electron and proton both have spin 1/2, so §2 = S;; = (3/4)h>. In the

triplet state (spins “parallel”) the total spin is 1, and hence S? = 2/?; in the singlet
state the total spin is 0, and $2 = 0. Thus

4g,h* | +1/4, (tripley):

Elj=—5P"
ht 3mpmicia* | =3/4. (singlet).

[6.92]
Spin-spin coupling breaks the spin degeneracy of the ground state, lifting the

triplet configuration -and depressing the singlet (see Figure 6.13). The energy gap

is evidently

4gph4

—f . =588x10%eV. 6.93
3mpmiciat 8 © 1653]

AE =
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Triplet
,,’ 4
Unperturbed R
-
\\
\ AE
\
\
\
\
\ .
\  Singlet Y

FIGURE 6.13: Hyperfine splitting in the ground state of hydrogen.

The frequency of the photon emitted in a transition from the triplet to the singlet
state is AE
v = T‘ = 1420 MHz. [694]
1

and the corresponding wavelength is ¢/v = 21 cm, which falls in the microwave
region. This famous 21-centimeter line is among the most pervasive and ubiquitous
forms of radiation in the universe.

Problem 6.27 Let a and b be two constant vectors. Show that
R . 4
f(a -r)(b-r)sinfdédep = —;—T—(a - b) [6.95]

(the integration is over the usual range: 0 < 6 <, 0 < ¢ < 27). Use this result
to demonstrate that

<3(Sp ’A)(Se ' ;) _Sp . Sc>
3 =0.

¥

for states with | = 0. Hint: F = sin cos¢7 + sinf sin¢ j + cos 6k.

Problem 6.28 By appropriate modification of the hydrogen formula, determine
the hyperfine splitting in the ground state of (a) muonic hydrogen (in which a
muon—same charge and g-factor as the electron, but 207 times the mass—substi-
tutes for the electron), (b) positronium (in which a positron—same mass and
g-factor as the electron, but opposite charge—substitutes for the proton), and
(c) muonium (in which an anti-muon—same mass and g-factor as a muon, but
opposite charge—substitutes for the proton). Hint: Don’t forget to use the reduced
mass (Problem 5.1) in calculating the “Bohr radius™ of these exotic *“atoms.” Inci-
dentally, the answer you get for positronium (4.82 x 10™* eV) is quite far from
the experimental value (8.41 x 10~* eV); the large discrepancy is due to pair anni-
hilation (e + e~ — y + y), which contributes an extra (3/4)AE, and does not
occur (of course) in ordinary hydrogen, muonic hydrogen, or muonium.




286

Chapter 6 Time-Independent Perturbation Theory

FURTHER PROBLEMS FOR CHAPTER 6

Problem 6.29 Estimate the correction to the ground state energy of hydrogen due
to the finite size of the nucleus. Treat the proton as a uniformly charged spherical
shell of radius b, so the potential energy of an electron inside the shell is constant:
—e2/(4meph); this isn’t very realistic, but it is the simplest model, and it will
give us the right order of magnitude. Expand your result in powers of the small
parameter (b/a), where a is the Bohr radius, and keep only the leading term, so
your final answer takes the form

AE
— = A(b/a)".
3 (b/a)
Your business is to determine the constant A and the power n. Finally, put in

b~10"m (roughly the radius of the proton) and work out the actual number.
How does it compare with fine structure and hyperfine structure?

Problem 6.30 Consider the isotropic three-dimensional harmonic oscillator
(Problem 4.38). Discuss the effect (in first order) of the perturbation

H' = x%yz
(for some constant A) on
(a) the ground state;

(b) the (triply degenerate) first excited state. Hint: Use the answers to
Problems 2.12 and 3.33.

* * xProblem 6.31 Van der Waals interaction. Consider two atoms a distance R apart.

Because they are electrically neutral you might suppose there would be no force
between them, but if they are polarizable there is in fact a weak attraction. To
model this system, picture each atom as an electron (mass m, charge —e) attached
by a spring (spring constant k) to the nucleus (charge +¢), as in Figure 6.14. We’ll
assume the nuclei are heavy, and essentially motionless. The Hamiltonian for the
unperturbed system is

1 ) | 2 1 2 1 2
H = —p? + —kx? + —p3 + —kx;. 6.96
2mpl+2 ‘1+2mp2+2 Y2 [ |
+e :::: -e +e :::: -e
Xy X2

\

R

FIGURE 6.14: Two nearby polarizable atoms (Problem 6.31).
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The Coulomb interaction between the atoms is

H = (e2 ‘¢ < < [6.97]
“4meg \R R—-x; R+x2 R—=—xi4+x)/)’ '

(a) Explain Equation 6.97. Assuming that |x;| and |x;| are both much less than
R, show that
erx1x2

H = _———
2megR

[6.98]

(b) Show that the total Hamiltonian (Equation 6.96 plus Equation 6.98) separates
into two harmonic oscillator Hamiltonians:

1 5 1 5’2 2 1 5 ! e?— 2
H=|—pi+=-{k— X7 —pi+=- |k x2 |, [6.99
[2»: Prt3 ( 2neoR3) ‘*‘}Ll:zm Pty \M ez | = | 10

under the change of variables

1 |
= —(x; T x2). i i = —(p1 T p2). X
X4 ﬁ(vl x2). which entails p+ ﬁ(])l p2) [6.100]

(c) The ground state energy for this Hamiltonian is evidently

k F (€2 /2w enR3)
m |

1
E = 51‘1((4)4. +w_), where wy = \/ [6.101]

Without the Coulomb interaction it would have been Ey = hwg, where wg =
Jk/m. Assuming that k > (e2/2megR?), show that

2

AV=E_Ey=—_" ("2> ! [6.102]
B 0= 8m2w3 \2mep) RS’ .

Conclusion: There is an attractive potential between the atoms, proportional
to the inverse sixth power of their separation. This is the van der Waals
interaction between two neutral atoms.

(d) Now do the same calculation using second-order perturbation theory. Hint:
The unperturbed states are of the form v, (x1) ¥, (x2), where ¥, (x) is a
one-particle oscillator wave function with mass m and spring constant k; AV
is the second-order correction to the ground state energy, for the perturbation
in Equation 6.98 (notice that the first-order correction is zero).

* xProblem 6.32 Suppose the Hamiltonian H, for a particular quantum system, is
a function of some parameter A; let E,(A) and i,(}) be the eigenvalues and
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eigenfunctions of H(1). The Feynman-Hellmann theorem?? states that

oE 0H '
ak” = <wn|a|wn> [6.103]

(assuming either that E, is nondegenerate, or—if degenerate-—that the i,’s are
the “good” linear combinations of the degenerate eigenfunctions).

(a) Prove the Feynman-Hellmann theorem. Hint: Use Equation 6.9.

(b) Apply it to the one-dimensional harmonic oscillator, (i) using A = w (this
yields a formula for the expectation value of V'), (ii) using A = £ (this yields
(T)), and (iii) using A = m (this yields a relation between (T) and (V)).
Compare your answers to Problem 2.12, and the virial theorem predictions
(Problem 3.31).

* xProblem 6.33 The Feynman-Hellmann theorem (Problem 6.32) can be used to
determine the expectation values of 1/r and 1/r% for hydrogen.?* The effective
Hamiltonian for the radial wave functions is (Equation 4.53)

h? d? N REIA+1) 2 1

2mdr?  2m 2 dreg r’

and the eigenvalues (expressed in terms of /)* are (Equation 4.70)

me4

E,=— :
" 32722 h% (jmax + 1 + )2

(a) Use A = e in the Feynman-Hellmann theorem to obtain (1/r). Check your
result against Equation 6.55.

(b) Use A =1 to obtain (1/r%). Check your answer with Equation 6.56.

* % *Problem 6.34 Prove Kramers’ relation:?’

s:zl ) — @s+ Da(r*™h) + %[(21 + 1)2 = s¥a*(r* ) =0, [6.104]

22Feynman obtained Equation 6.103 while working on his undergraduate thesis at MIT
(R. P. Feynman, Phys. Rev. 56. 340. 1939); Hellmann's work was published four years earlier in an
obscure Russian journal,

23C, Sanchez del Rio. Am. J. Phys. 50, 556 (1982): H. S. Valk, Am. J. Phys. 54, 921 (1986).

Hn part (b) we treat ! as a continuous variable: n becomes a function of /, according to
Equation 4.67, because jyax. which must be an integer. is fixed. To avoid confusion, 1 have eliminated
n, to reveal the dependence on / explicitly.

25This is also known as the (second) Pasternack relation. Sce H. Beker, Am. J. Phys. 65, 1118
(1997). For a proof based on the Feynman-Hellmann theorem (Problem 6.32). see S. Balasubramanian,
Am. J. Phys. 68, 959 (2000).
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which relates the expectation values of r to three different powers (s, s — 1, and
s — 2), for an electron in the state v, of hydrogen. Hint: Rewrite the radial
equation (Equation 4.53) in the form

Id+1 2 1
Ll”=|:(+ )_ + jlu,

7'2 ar nZ(l:Z

and use it to express [(ur*u”)dr in terms of (r¥), (r*=1y, and (*~2). Then use
integration by parts to reduce the second derivative. Show that [(urfu’)dr =

—(s/2)("Y, and ['ru'ydr = —[2/(s + D] [@W"r"Tu)dr. Take it from
there.
Problem 6.35

(a) Plugs =0,s = 1,5 =2, and s = 3 into Kramers’ relation (Equation 6.104)
to obtain formulas for (r~!), (r), (r?), and {r?). Note that you could continue
indefinitely, to find any positive power.

(b) In the other direction, however, you hit a snag. Put in s = —1, and show
that all you get is a relation between (r~2) and (r—3).

(c) But if you can get (r—2) by some other means, you can apply the Kramers’

relation to obtain the rest of the negative powers. Use Equation 6.56 (which is
derived in Problem 6.33) to determine (r—3), and check your answer against
Equation 6.64.

* % xProblem 6.36 When an atom is placed in a uniform external electric field E;y,,
the energy levels are shifted—a phenomenon known as the Stark effect (it is the
electrical analog to the Zeeman effect). In this problem we analyze the Stark effect
for the n = 1 and n = 2 states of hydrogen. Let the field point in the z direction,
so the potential energy of the electron is

H¢ = eEcxz = eEcxr cosé.

Treat this as a perturbation on the Bohr Hamiltonian (Equation 6.42). (Spin is
irrelevant to this problem, so ignore it, and neglect the fine structure.)

(a) Show that the ground state energy is not affected by this perturbation, in
first order.

(b) The first excited state is 4-fold degenerate: v¥r200, Y211, ¥210, ¥21—1. Using
degenerate perturbation theory, determine the first-order corrections to the
energy. Into how many levels does E3 split?

(c) What are the “good” wave functions for part (b)? Find the expectation value
of the electric dipole moment (p, = —er) in each of these “good” states.
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Notice that the results are independent of the applied field—evidently hydro-
gen in its first excited state can carry a permanent electric dipole momert.

Hint: There are a lot of integrals in this problem, but almost all of them are
zero. So study each one carefully, before you do any calculations: If the ¢ integral
vanishes, there’s not much point in doing the r and @ integrals! Partial answer:
Wiz = W31 = —3ea Ex; all other elements are zero.

* % ¥Problem 6.37 Consider the Stark effect (Problem 6.36) for the n = 3 states of
hydrogen. There are initially nine degenerate states, V3, (neglecting spin, as
before), and we turn on an electric field in the z direction.

(a) Construct the 9 x 9 matrix representing the perturbing Hamiltonian. Partial
answer: (300|z|310) = —3+/6a, (310]2]320) = —3+/3a. (31T 1|z|32F 1) =
—(9/2)a.

(b) Find the eigenvalues, and their degeneracies.

Problem 6.38 Calculate the wavelength, in centimeters, of the photon emitted
under a hyperfine transition in the ground state (n = 1) of deuterium. Deuterium
is “heavy” hydrogen, with an extra neutron in the nucleus; the proton and neutron
bind together to form a deuteron, with spin 1 and magnetic moment
8d¢e
S(I

B’y =
“ 2my

the deuteron g-factor is 1.71.

* % ¥Problem 6.39 In a crystal, the electric field of neighboring ions perturbs the energy
levels of an atom. As a crude model, imagine that a hydrogen atom is surrounded
by three pairs of point charges, as shown in Figure 6.15. (Spin is irrelevant to this
problem, so ignore it.)

(a) Assuming that r < dj, r < da, and r < d3, show that
H' = Vy+3(81x% + Bay” + B32%) — (B1 + B2 + Ba)r,

where
€ dqi 2 2 2

— 3 and VO = Z(ﬁldl +ﬁ2[lz + ﬁ3[l3).
dreg d’:

Bi = —

(b) Find the lowest-order correction to the ground state energy.

(c) Calculate the first-order corrections to the energy of the first excited states
(n = 2). Into how many levels does this four-fold degenerate system split,
(i) in the case of cubic symmetry, 8y = B> = pBs; (ii) in the case of
tetragonal symmetry, ) = 2 # f3; (iii) in the general case of orthorhom-
bic symmetry (all three different)?
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ZA

e
N
<Y

FIGURE 6.15: Hydrogen atom surrounded by six point charges (crude model for a
crystal lattice); Problem 6.39.

% % ¥Problem 6.40 Sometimes it is possible to solve Equation 6.10 directly, without
having to expand Kﬁ,i in terms of the unperturbed wave functions (Equation 6.11).
Here are two particularly nice examples.

(a) Stark effect in the ground state of hydrogen.
(1) Find the first-order correction to the ground state of hydrogen in the
presence of a uniform external electric field E¢x (the Stark effect—see
Problem 6.36). Hint: Try a solution of the form

(A+ Br 4+ Crhe " cos 9

your problem is to find the constants A, B, and C that solve
Equation 6.10.

(i) Use Equation 6.14 to determine the second-order correction to the
ground state energy (the first-order correction is zero, as you found in
Problem 6.36(a)). Answer: —m(3a2eEcx /27*1)2.

(b) If the proton had an electric dipole moment p, the potential energy of the
electron in hydrogen would be perturbed in the amount

b — epcosf

dmegr?”

(i) Solve Equation 6.10 for the first-order correction to the ground state
wave function.
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(11) Show that the total electric dipole moment of the atom is (surprisingly)
zero, to this order.

(1i1) Use Equation 6.14 to determine the second-order correction to the
ground state energy. What is the first-order correction?




CHAPTER 7

THE VARIATIONAL PRINCIPLE

7.1 THEORY

Suppose you want to calculate the ground state energy, Egs, for a system described
by the Hamiltonian H, but you are unable to solve the (time-independent)
Schrodinger equation. The variational principle will get you an upper bound for
Eqs, which is sometimes all you need, and often, if you're clever about it, very
close to the exact value. Here's how it works: Pick any normalized function
whatsoever; 1 claim that

Egsf (VIH|Y) = (H). [7.1]

That is, the expectation value of H, in the (presumably incorrect) state i is certain
to overestimate the ground state energy. Of course, if { just happens to be one
of the excited states, then obviously (H) exceeds Egs; the point is that the same
holds for any ¥ whatsoever.

Proof: Since the (unknown) eigenfunctions of H form a complete set, we can
express ¥ as a linear combination of them:!

v = ch Yn.  with Hy,, = Ep .
n

U1t the Hamiltonian admits scattering states. as well as bound states. then we’ll need an integral
as well as a sum. but the argument is unchanged.

293
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Since ¥ is normalized,

1= (¢lY) <Z CmW¥m

m

Z C,,l,b‘,,> = Z Z C':ycir(w;irl¢ir) = Z |C,,|2,

m

(assuming the eigenfunctions themselves have been orthonormalized: (V,,|v,) =
Smn)- Meanwhile,

<Z CnWm | H

m

Z Cn 1;b‘n> Z Z ('m Eycn (Y |¥n) Z Eqlcy |2.
n

m

But the ground state energy is, by definition, the smallest eigenvalue, so Egs < E,
and hence

(H) = Egs Z |C'n|2 = Egs-
n

which is what we were trying to prove.

Example 7.1 Suppose we want to find the ground state energy for the one-
dimensional harmonic oscillator:

h? d? +1
=—r—— —mwx?
2 dx?

Of course, we already know the exact answer, in this case (Equation 2.61): Eqs =
(1/2)hw; but this makes it a good test of the method. We might pick as our “trial”
wave function the Gaussian,

Y(x) = Ae~P, [7.2]

where b is a constant, and A is determined by normalization:

2} 174
1_|A|f e gy = |A) / (’) . [7.3]

(H) =(T) + (V). [7.4]

Now

where, In this case,

f2 o ) d?_ rlb
(T) = —I—IAIZf e S (c"“ ) dx = =—. [7.5]
-0

dx? 2m
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and
] fad 2 10>
(V) = EmwzlAl2 /;m e 2y dx = "18(2 :
) 2 ,
b mw-
HY = —+ —. 7.6
(H) 2m + &b [7.6]

According to Equation 7.1, this exceeds Egs for any b: to get the tightest
bound, let’s minimize (H):

d (H) h? mw? 0 = ¢ mew
_— = — — = > ) = —,
db 2m  8h? 2h

Putting this back into (H), we find

(H )min = %hw- [7.7]

In this case we hit the ground state energy right on the nose—because (obviously)
I “just happened” to pick a trial function with precisely the form of the actual
ground state (Equation 2.59). But the gaussian is very easy to work with, so it’s a
popular trial function, even when it bears little resemblance to the true ground state.

Example 7.2 Suppose we're looking for the ground state energy of the delta-
function potential:

h? d* 506)
= ———= —ad(x).
2in dx?
Again, we already know the exact answer (Equation 2.129): Eqs = —maz/th. As

before, we'll use a gaussian trial function (Equation 7.2). We’ve already determined
the normalization, and calculated (T'): all we need is

> 2 2b
(V) = —a|A|2f ¢S dx = —ay [ =
—5 T
Evidently
Rl 21
(Hy = ~— o |22, [7.8]
2m b4

and we know that this exceeds Eg for all b. Minimizing it,

b 7.0
d h* o 2imca~

db 2m Swb Rt
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So
b
mo<

‘) .
mh~

(H)min = - [7

which is indeed somewhat higher than E,, since & > 2.

I said you can use any (normalized) trial function ¥ whatsoever, and this
true in a sense. However, for discontinuous functions it takes some fancy footwc
to assign a sensible meaning to the second derivative (which you need, in order
calculate (T)). Continuous functions with kinks in them are fair game, howewv
as long as you are careful; the next example shows how to handle them.?

Example 7.3 Find an upper bound on the ground state energy of the on
dimensional infinite square well (Equation 2.19), using the “triangular” trial wa
function (Figure 7.1):3

Ax, if0<x<a/2
vx)=4{ Ala—x). ifa/2 <x<ua. [7.10
0. otherwise,

where A is determined by normalization:

a/ a 3 2 /3
1=|A) / Rdy+ | @-x)2dx =1L = a=2/2 o
Jo a/? 12 aV a

w(x) A

al2 a X

FIGURE 7.1: Triangular trial wave function for the infinite square well (Equa
tion 7.10).

2For a collection of interesting examples sec W. N. Mei, /nt. J. Educ. Sci. Tech. 30. 513 (1999)

There is no point in trying a function (such as the gaussian) that “leaks™ outside the well
because you'll get (V) = oc. and Equation 7.1 tells you nothing.
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dy/dx A

al? a

xY

A+

FIGURE 7.2: Derivative of the wave function in Figure 7.1.

In this case

A. if0<x<a/2
[ b
i: —-A. ifa/2 <x <a,
dx 0, otherwise,

as indicated in Figure 7.2. Now, the derivative of a step function is a delta function
(see Problem 2.24(b)):

2
[‘1_1:/2[ = Ad(x) —2Ad6(x —a/2) + Ad(x — a), [7.12]
and hence
h2A
(H) = ~ S [6(x) —28(x —a/2) +6(x — )Y (x)dx
hZA h*A? 1242
=SSO - 2@+ Y@= — < =T [113]
m 2m 2ma-=

The exact ground state energy is Egs = m2h?/2ma? (Equation 2.27), so the theorem
works (12 > 72).

The variational principle is extraordinarily powerful, and embarrassingly casy
to use. What a physical chemist does to find the ground state energy of some
complicated molecule is write down a trial wave function with a large number of
adjustable parameters, calculate (H), and tweak the parameters to get the lowest
possible value. Even if i has little resemblance to the true wave function, you
often get miraculously accurate values for Eg. Naturally, if you have some way
of guessing a realistic Y, so much the better. The only trouble with the method
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is that you never know for sure how close you are to the target—all you can be
certain of is that you've got an upper bound.* Moreover, as it stands, the technique
applies only to the ground state (see, however, Problem 7.4).

*Problem 7.1 Use a gaussian trial function (Equation 7.2) to obtain the lowest
upper bound you can on the ground state energy of (a) the linear potential: V(x) =
a)x|; (b) the quartic potential: V (x) = ax®.

% xProblem 7.2 Find the best bound on Eg for the one-dimensional harmonic oscil-
lator using a trial wave function of the form

v(x) =

x2 4 P2

where A is determined by normalization and / is an adjustable parameter.

Problem 7.3 Find the best bound on E for the delta-function potential V (x) =
—ad(x), using a triangular trial function (Equation 7.10, only centered at the ori-
gin). This time « is an adjustable parameter.

Problem 7.4

(a) Prove the following corollary to the variational principle: If (y|¥g) = 0, ‘

then (H) > Ej., where Ej. is the energy of the first excited state.

Thus, if we can find a trial function that is orthogonal to the exact ground
state, we can get an upper bound on the first excited state. In general, it’s
difficult to be sure that ¥ is orthogonal to Vs, since (presumably) we don’t
know the latter. However, if the potential V (x) is an even function of x,
then the ground state is likewise even, and hence any odd trial function will
automatically meet the condition for the corollary.

(b) Find the best bound on the first excited state of the one-dimensional harmonic
oscillator using the trial function

Eb‘(\') = AJ\'e_b"'z.

*In practice this isn't much of a limitation. and there are sometimes ways of estimating the
accuracy. The ground state helium has been calculated to many significant digits in this way—see for
cxample G. W. Drake et al.. Phys. Rev. A 65, 054501 (2002) or Vladimir . Korobov, Phvs. Rev. A 66,
024501 (2002).

For a systematic extension of the variational principle to the calculation of excited state ener-
gics see, for example. Linus Pauling and E. Bright Wilson, Introduction to Quantum Mechanics, With
Applications to Chemistry. McGraw-Hill. New York (1935, paperback edition 1985). Section 26.
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Problem 7.5

(a) Use the variational principle to prove that first-order non-degenerate pertur-
bation theory always overestimates (or at any rate never underestimates) the
ground state energy.

(b) In view of (a), you would expect that the second-order correction to the
ground state is always negative. Confirm that this is indeed the case, by
examining Equation 6.15.

7.2 THE GROUND STATE OF HELIUM

The helium atom (Figure 7.3) consists of two electrons in orbit around a nucleus
containing two protons (also some neutrons, which are irrelevant to our purpose).
The Hamiltonian for this system (ignoring fine structure and smaller corrections) is:

H=

e (2 2 1
(VI +V3) — (~+-—— -—) [7.14]
2m - 4meg \ry 12 |rp —ra

Our problem is to calculate the ground state energy, Egs. Physically, this repre-
sents the amount of energy it would take to strip off both electrons. (Given Egs
it is easy to figure out the “ionization energy” required to remove a single elec-
tron—see Problem 7.6.) The ground state energy of helium has been measured to
great precision in the laboratory:

E,s = —78.975 eV  (experimental). [7.15]

This is the number we would like to reproduce theoretically.
It is curious that such a simple and important problem has no known exact
solution.® The trouble comes from the electron-electron repulsion,

e? 1

Vee = [7.16]

drep |r) — 12|

FIGURE 7.3: The helium atom.

$There do exist exactly soluble three-body problems with many of the qualitative features of
helium, but using non-coulombic potentials (see Problem 7.17).
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If we ignore this term altogether, H splits into two independent hydrogen Hamil-
tonians (only with a nuclear charge of 2e, instead of ¢); the exact solution is just
the product of hydrogenic wave functions:

8 o
Yo(ry. r2) = Yrioo(r)¥ioo(r2) = ;a—_;e'z("+'2)/"- [7.17]
and the energy is 8E; = —109 eV (Equation 5.31).7 This is a long way from

—79 eV, but it’s a start.

To get a better approximation for Egs we’ll apply the variational principle,
using Y as the trial wave function. This is a particularly convenient choice because
it’s an eigenfunction of most of the Hamiltonian:

Hyg = (BE| + Vee) Y. [7.18]
Thus
(H) =8E| + (Vee). [7.19]
where3 i i sy
e\ 8 - e ) /a
Vo) = . dridr. 7.20
Vee) (47reo) (71’(13) f TEIRE 7201

I’ll do the r; integral first; for this purpose r; is fixed, and we may as well orient
the ry coordinate system so that the polar axis lies along r; (see Figure 7.4). By
the law of cosines,

Ir) =12 = \Jr2 + 1} = 2173 cos b, [7.21]

and hence
—4; 2 fa

] Irl_hl f\/ +17—2117700597

The ¢; integral is trivial (27r); the 8, integral is

-—4n/a
r3 sinfy dradrden. [7.22]

d sinf; \/ ,.12 + ’.22 — 2rjrycosby |t
dér, = _
0 \/'12 + l'% —2rirycosth rr 0
"Here a is the ordinary Bohr radius and E, = —13.6/;13 eV is the nth Bohr energy: recall

that for a nucleus with atomic number Z. E, — ZEE,, and ¢« — a/Z (Problem 4.16). The spin
configuration associated with Equation 7.17 will be antisymmetric (the singlet).

8You can. if you like. interpret Equation 7.20 as first-order perturbation theory. with H' = V,,.
However. 1 regard this as a misuse of the method, since the perturbation is comparable in size to the
unperturbed potential. 1 prefer, therefore, to think of it as a variational calculation. in which we are
looking for an upper bound on Egs.
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Xa

FIGURE 7.4: Choice of coordinates for the ry-integral (Equation 7.20).

1
= T’?_‘ (\/112 + 1'22 +2rira — \//12 + 1‘22 - 27'11'2>

2/r1. ifr <y,
2/’”2, if ry > ri.

[(r+nrn)—|lrn—nll= { [7.23]

rira

1 ©0
I, =47 (—f e_4"3/"r22 dry +f e /ey, dr2>
ri Jo r

3 .
_ e [ _ (1 i -22) o /a] . (7.2
8r a

It follows that (V) is equal to

2 8
( e ) ( 3) / {] — (l + ‘_2_’_1) e—4r|/a] e—4r|/ar1 sin6, drid,d¢,.
dmeg Ta p

The angular integrals are easy (4s), and the r| integral becomes

o0 2’.2 5(12
—4rfa _ | .. “ —8r/a dr =
fo [re (' T )" ] HNTT

Thus

Finally, then,

5 [ & 5
Voe) = — =——FE; =34¢V, 7.25
(Vee) 4a (471’60) 2 ! © [ ]
and therefore
(HYy=—109eV +34eV=-75eV. [7.26]

Not bad (remember, the experimental value is —79 eV). But we can do better.
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We need to think up a more realistic trial function than v (which treats the
two electrons as though they did not interact at all). Rather than completely ignoring
the influence of the other electron, let us say that, on the average, each electron
represents a cloud of negative charge which partially shields the nucleus, so that
the other electron actually sees an effective nuclear charge (Z) that is somewhat
less than 2. This suggests that we use a trial function of the form

3
Yi(r.r) = %e—z("' +ra/a [7.27]
ma
We’ll treat Z as a variational parameter, picking the value that minimizes H. (Please
note that in the variational method we never touch the Hamiltonian itself—the
Hamiltonian for helium is, and remains, Equation 7.14. But it’s fine to think about
approximating the Hamiltonian as a way of motivating the choice of the trial wave
function.
This wave function is an eigenstate of the “unperturbed” Hamiltonian (neglect-
ing electron repulsion), only with Z, instead of 2, in the Coulomb terms. With this
in mind, we rewrite H (Equation 7.14) as follows:

h? LI 4
H=——(V}+V}) - (~+~)
r r

2m dreg
2
e” Z—-2 Z-2 1
(( ) + ( ) + ) . [7.28]
dmeg r rn Iry — 1o
The expectation value of H is evidently

e? 1
() =221+ 22 -2 (=) H + (Veo). 7.29)

dmeg ) \r1

Here (1/r) is the expectation value of 1/r in the (one-particle) hydrogenic ground
state Yrjop (but with nuclear charge Z); according to Equation 6.55,

<l> = Z [7.30]

r a

The expectation value of V,, is the same as before (Equation 7.25), except that
instead of Z = 2 we now want arbitrary Z—so we multiply a by 2/Z:

52 ([ & 5Z
Ve: —_ = __’_E . 7-31
(Vee) 8a (471’60) 4 ! [ ]

Putting all this together, we find

(H) = [222 _4Z(Z—2) — (5/4)2] E| = [=2Z% + Q7/HZ1E;.  [1.32]
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According to the variational principle, this quantity exceeds Egs for any value
of Z. The lowest upper bound occurs when (H) is minimized:

d

—(H)=[-4Z 27/4)]Ey = 0.

dZ( y =1 + (27/M]E, :
from which it follows that 57

This seems reasonable; it tells us that the other electron partially screens the nucleus,
reducing its effective charge from 2 down to about i.69. Putting in this value for
Z, we find

1 (3\°
(Hy=-{=z) E;=-77.5¢eV. [7.34]
2\2
The ground state of helium has been calculated with great precision in this
way, using increasingly complicated trial wave functions, with more and more
adjustable parameters.® But we’re within 2% of the correct answer, and, frankly,
at this point my own interest in the problem begins to wane.!?

Problem 7.6 Using Eg = —79.0 eV for the ground state energy of helium, cal-
culate the ionization energy (the energy required to remove just one electron).
Hint: First calculate the ground state energy of the helium ion, He™, with a single
electron orbiting the nucleus; then subtract the two energies.

+Problem 7.7 Apply the techniques of this Section to the H™ and Li™ ions (each
has two electrons, like helium, but nuclear charges Z = | and Z = 3, respectively).
Find the effective (partially shielded) nuclear charge, and determine the best upper
bound on Eg, for each case. Comment: In the case of H™ you should find that
(H) > —13.6 eV, which would appear to indicate that there is no bound state at
all, since it would be energetically favorable for one electron to fly off, leaving
behind a neutral hydrogen atom. This is not entirely surprising, since the electrons
are less strongly attracted to the nucleus than they are in helium, and the electron
repulsion tends to break the atom apart. However, it turns out to be incorrect. With
a more sophisticated trial wave function (see Problem 7.18) it can be shown that
Eqs < —13.6 €V, and hence that a bound state does exist. It’s only barely bound,

9The classic studics are E. A. Hylleraas, Z. Phys. 65. 209 (1930); C. L. Pckeris, Phys. Rev. 115,
1216 (1959). For more recent work see lootnote 4,

0The first excited state of helium can be calculated in much the same way. using a trial wave
function orthogonal to the ground state. See P.J. E. Peebles, Quantum Mechanics. Princeton U.P.,
Princeton. NJ (1992). Scction 40.
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however, and there are no excited bound states,!! so H™ has no discrete spectrum
(all transitions are to and from the continuum). As a result, it is difficult to study
in the laboratory, although it exists in great abundance on the surface of the sun.!?

7.3 THE HYDROGEN MOLECULE ION

Another classic application of the variational principle is to the hydrogen molecule
ion, Hj’ consisting of a single electron in the Coulomb field of two protons
(Figure 7.5). I shall assume for the moment that the protons are fixed in posi-
tion, a specified distance R apart, although one of the most interesting byproducts
of the calculation is going to be the actual value of R. The Hamiltonian is

h2 2 /11
H=e - g2__¢ (—+—>, [7.35]
2m dmweg \ry 1

where r| and r are the distances to the electron from the respective protons. As
always, our strategy will be to guess a reasonable trial wave function, and invoke
the variational principle to get a bound on the ground state energy. (Actually, our
main interest is in finding out whether this system bonds at al/l —that is, whether
its energy is less than that of a neutral hydrogen atom plus a free proton. If our
trial wave function indicates that there is a bound state, a better trial function can
only make the bonding even stronger.)

To construct the trial wave function, imagine that the ion is formed by taking
a hydrogen atom in its ground state (Equation 4.80),

Yo(r) = e/, [7.36]

Vrad

bringing the second proton in from “infinity,” and nailing it down a distance R
away. If R is substantially greater than the Bohr radius, the electron’s wave function
probably isn’t changed very much. But we would like to treat the two protons on

—-e

+e R +eé  FIGURE 7.5: Thehydrogen moleculeion, H;'

HRobert N. Hill. J. Math. Phys. 18, 2316 (1977).

[2For further discussion see Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms, Plenum, New York (1977). Section 34,
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an equal footing, so that the electron has the same probability of being =
with either one. This suggests that we consider a trial function of the fonl

¥ = A[Yo(r)) + Yo(r2)].

(Quantum chemists call this the LCAO technique, because we are express
molecular wave function as a linear combination of atomic orbitals.)
Our first task is to normalize the trial function:

1=f|w|2d3'r= A2 U Io(r)|? dr
+f|¢0("2)|2d31‘+2f¢o(7'1)¢0(r2)d3r].

The first two integrals are 1 (since ¥ itself is normalized); the third is more tricky.
Let

1 -
I'= (Yo(r)lvo(r)) = ;nge“"“:-’/“ dr. [7.39]

Picking coordinates so that proton 1 is at the origin and proton 2 is on the z axis
at the point R (Figure 7.6), we have

ri=r and r=+r2+ R2—2rRcosé. [7.40]

and therefore

[ = — [ em"/ag=Vr+R=2Reos0/a,2 G g drdde. [7.41]

ro=r2+ R2-2rRcos 6

<Y

X

FIGURE 7.6: Coordinates for the calculation of I (Equation 7.39).
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The ¢ integral is trivial (27r). To do the € integral, let

v=+vr2+ R2—2rRcosf. so that d(y*) =2ydy = 2rRsin6 dé.

Then

x \/ Ty TR " 1 r+R
f o~V HRI-2R S0/ i g g — - f e ¥y dy
A IR Ji—Ry

a

rR

[e_("+m/“()‘ +R+a)—e T RVar — R+ fl)] :

The r integral is now straightforward:

2 o : R
] = q—[—e_R/“ f (r+ R+ a)e 2/ dr + e~ R/4 f (R—r+a)rdr
a-R Jo 0
o0
+ eRla f (r—R+a)e 2/ dr].
R

Evaluating the integrals, we find (after some algebraic simplification),

[ = ¢~Rla {1 + (5> 41 (5>—} . [7.42]
a 3\a

I is called an overlap integral; it measures the amount by which ¥g(r|) overlaps
Yo(r2) (notice that it goes to 1 as R — 0, and to 0 as R — o0). In terms of I, the
normalization factor (Equation 7.38) is

1
1AI> = . [7.43]
200+ 1)
Next we must calculate the expectation value of H in the trial state ¥. Not-
ing that
h? e’ 1
—2= V% — ——— | ¥o(r1) = Ervo(r1)

2m dmeg ry

(where E; = —13.6 eV is the ground state energy of atomic hydrogen)—and the

same with r; in place of »j—we have

R, 2 /11
Hy =A SRS VR . (—‘ + —‘> [Yo(r1) + Yo(r2)]
2m dreg \r1 n
e 1 1
=EvY-A ( ) [TWO("l) + _—1”0(7‘2)] :
dreg r r



Section 7.3: The Hydrogen Molecule Ion 307

It follows that

VA

9 2 1
(H)=E,—2|AJ (4; ) [wo(rl) |;

€0

1
Yo(ri))+{¥o(r) |:

Yo (-7‘2))] . [7.44]

I'1l let you calculate the two remaining quantities, the so-called direct integral,

1
D = a(yp(r1) ~ Yo(rn)). [7.45]
and the exchange integral,
1
X =alyo(r) IZ Yo (ra)). [7.46]
The results (see Problem 7.8) are
— .(i _ ﬁ —2R/a
D= (1 + R)e . [7.47]
and
R —R/a
X=[14—]e . [7.48]
a

Putting all this together, and recalling (Equations 4.70 and 4.72) that E; =
—(e2/47reo)(l/2a), we conclude:

[7.49]

(H) = [l +2M] E,.

1+1
According to the variational principle, the ground state energy is less than (H). Of

course, this is only the electron’s energy—there is also potential energy associated
with the proton-proton repulsion:

e 1 2a
V,p = —— = ——E]. 7.50
PP dmeg R R 1 [ ]

Thus the fotal energy of the system, in units of —E|, and expressed as a function
of x = R/a, is less than

[7.51]

(1= @2/3)xH)e™ + (1 +x)e™™ }

2
Fy=-1+2 { T+ (1 +xF (1/3)xDe—r

This function is plotted in Figure 7.7. Evidently bonding does occur, for there
exists a region in which the graph goes below —1, indicating that the energy is less
than that of a neutral atom plus a free proton (—13.6 eV). It’s a covalent bond, with
the electron shared equally by the two protons. The equilibrium separation of the
protons is about 2.4 Bohr radii, or 1.3 A (the experimental value is 1.06 A). The



308

Chapter 7

The Variational Principle

-05—

- Equilibrium

B / X
-1 ! 1 | ] i !

-1.2 -

FIGURE 7.7: Plot of the function F(x), Equation 7.51, showing existence of a bound
state (x is the distance between the protons, in units of the Bohr radius).

calculated binding energy is 1.8 eV, whereas the experimental value is 2.8 eV (the
variational principle, as always, overestimates the ground state energy—and hence
underestimates the strength of the bond-——but never mind: The essential point was
to see whether binding occurs at all; a better variational function can only make
the potential well even deeper.

xProblem 7.8 Evaluate D and X (Equations 7.45 and 7.46). Check your answers

against Equations 7.47 and 7.48.

* xProblem 7.9 Suppose we used a minus sign in our trial wave function

(Equation 7.37):
¥ = AlYo(r1) — Yo(r2)]. [7.52]

Without doing any new integrals, find F'(x) (the analog to Equation 7.51) for this
case, and construct the graph. Show that there is no evidence of bonding.'? (Since
the variational principle only gives an upper bound, this doesn’t prove that bonding
cannot occur for such a state, but it certainly doesn’t look promising). Comment:
Actually, any function of the form

¥ = AlYo(r1) + e yo()]. [7.53]

'3Bonding occurs when the electron “prefers™ to be between the protons, attracting them inward.
But the odd linear combination (Equation 7.52) has a node at the center, so it’s not surprising that this
configuration drives the protons apart.
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has the desired property that the electron is equally likely to be associated with
either proton. However, since the Hamiltonian (Equation 7.35) is invariant under
the interchange P: r| < r», its eigenfunctions can be chosen to be simultaneously
eigenfunctions of P. The plus sign (Equation 7.37) goes with the eigenvalue +1,
and the minus sign (Equation 7.52) with the eigenvalue —1; nothing is to be gained
by considering the ostensibly more general case (Equation 7.53), though you're
welcome to try it, if you're interested.

% % xProblem 7.10 The second derivative of F(x), at the equilibrium point, can be
used to estimate the natural frequency of vibration (w) of the two protons in the
hydrogen molecule ion (see Section 2.3). If the ground state energy (Aw/2) of this
oscillator exceeds the binding energy of the system, it will fly apart. Show that in
fact the oscillator energy is small enough that this will not happen, and estimate
how many bound vibrational levels there are. Note: You’re not going to be able
to obtain the position of the minimum-—still less the second derivative at that
point—analytically. Do it numerically, on a computer.

FURTHER PROBLEMS FOR CHAPTER 7

Problem 7.11

(a) Use a trial wave function of the form

+_ | Acos(mxja), if (—a/2 <x < a/2),
v(x) = { 0 otherwise

to obtain a bound on the ground state energy of the one-dimensional harmonic
oscillator. What is the “best” value of a? Compare (H)min with the exact
energy. Note: This trial function has a “kink” in it (a discontinuous derivative)
at Ta/2; do you need to take account of this, as I did in Example 7.3?

(b) Use ¥ (x) = Bsin(rx/a) on the interval (—a, a) to obtain a bound on the
first excited state. Compare the exact answer.

x xProblem 7.12

(a) Generalize Problem 7.2, using the trial wave function'?

Y(x) = (‘\.2 + bz)" K

Hw. N. Mei, Int. J. Educ. Sci. Tech. 27, 285 (1996).
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for arbitrary n. Partial answer: The best value of b is given by

2 N [ntén—Dn —3) 12
i me 22n + 1) '

(b) Find the least upper bound on the first excited state of the harmonic oscillator
using a trial function of the form

Bx

1,0(.1«) = (xz + bl)n'

Partial answer: The best value of b is given by

mw 22n+1)

2ot [n(4n—5)(4n—3)]1/2

(c) Notice that the bounds approach the exact energies as n — oo. Why is
that? Hint: Plot the trial wave functions for » = 2, n = 3, and n = 4, and
compare them with the true wave functions (Equations 2.59 and 2.62). To do
it analytically, start with the identity

¢ = lim (1 + £>" .

n—>o0 1

Problem 7.13 Find the lowest bound on the ground state of hydrogen you can get
using a gaussian trial wave function

U(r) = Ae™""

where A is determined by normalization and b is an adjustable parameter. Answer:
—11.5eV.

* *Problem 7.14 If the photon had a nonzero mass (i1, # 0), the Coulomb potential

would be replaced by the Yukawa potential,

eZ e i
V) = -

[7.54]
dmeg 1

where u = myc/h. With a trial wave function of your own devising, estimate the

binding energy of a “hydrogen” atom with this potential. Assume pua <« 1, and

give your answer correct to order (ua)?.

Problem 7.15 Suppose you're given a quantum system whose Hamiltonian Hy
admits just two eigenstates, Y, (with energy E,), and v, (with energy Ej). They



Further Problems for Chapter 7 311

are orthogonal, normalized, and nondegenerate (assume E,, is the smaller of the two
energies). Now we turn on a perturbation H', with the following matrix elements:

Wal H' Vo) = (W H'[Y) =0 (Yol H' ) = (o H'|Wa) =h.  [7.55]

where h is some specified constant.

(a) Find the exact eigenvalues of the perturbed Hamiltonian.

(b) Estimate the energies of the perturbed system using second-order perturbation
theory.

(c) Estimate the ground state energy of the perturbed system using the variational
principle, with a trial function of the form

¥ = (cos §) Y, + (sing) Y. [7.56]

where ¢ is an adjustable parameter. Note: Writing the linear combination in
this way is just a neat way to guarantee that i is normalized.

(d) Compare your answers to (a), (b), and (c). Why is the variational principle
so accurate, in this case?

Problem 7.16 As an explicit example of the method developed in Problem 7.15,
consider an electron at rest in a uniform magnetic field B = B-k, for which the
Hamiltonian is (Equation 4.158):

B-
Ho = 255, [7.57]
i

The eigenspinors, x, and ;. and the corresponding energies, E, and Ej,, are given

in Equation 4.161. Now we turn on a perturbation, in the form of a uniform field

in the x direction: B
W:‘:&. [7.58]
H

(a) Find the matrix elements of H’, and confirm that they have the structure of
Equation 7.55. What is 1?

(b) Using your result in Problem 7.15(b), find the new ground state energy, in
second-order perturbation theory.

(c) Using your result in Problem 7.15(c), find the variational principle bound on
the ground state energy.

% % xProblem 7.17 Although the Schrédinger equation for helium itself cannot be
solved exactly, there exist “helium-like” systems that do admit exact solutions.
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A simple example!’ is “rubber-band helium.” in which the Coulomb forces are
replaced by Hooke’s law forces:

’-2 1 A
H ==~ (Vi 4 V) + -ma? (¢ +13) = Zmotle) — . [7.59]
2m 2 4

(a) Show that the change of variables from r;, ry, to

1 1
u=—(r|+nm). v=—( —r). [7.60]
/2 2
turns the Hamiltonian into two independent three-dimensional harmonic oscil-
lators:
oy ] n oo, 1 2.2
H = [_FHV; + Emwzuzil + [—EV; + 5(1 — Mmw v |.  [7.61]

(b) What is the exact ground state energy for this system?

(c) If we didn’t know the exact solution, we might be inclined to apply the
method of Section 7.2 to the Hamiltonian in its original form (Equation 7.59).
Do so (but don’t bother with shielding). How does your result compare with
the exact answer? Answer: (H) = 3hw(l — A /4).

* % xProblem 7.18 In Problem 7.7 we found that the trial wave function with shield-
ing (Equation 7.27), which worked well for helium, is inadequate to confirm the
existence of a bound state for the negative hydrogen ion. Chandrasekhar'® used a
trial wave function of the form

Y (ry.ra) = Al () Y2(r2) + Y2 (r)D Y ()1, [7.62]

z} ‘ z3 .,
i) = me-zl'/". and Ya(r) = —e” 2r/fa, [7.63]

In effect, he allowed two different shielding factors, suggesting that one electron is
relatively close to the nucleus, and the other is farther out. (Because electrons are
identical particles, the spatial wave function must be symmetrized with respect to
interchange. The spin state—which is irrelevant to the calculation—is evidently

where

1SFor a more sophisticated model. see R. Crandall. R. Whitnell. and R. Bettega, Am. J. Pivs. 52,
438 (1984).

165 Chandrasekhar. Astrophys. J. 100. 176 (1944),
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antisymmetric.) Show that by astute choice of the adjustable parameters Z; and Z>
you can get (H) less than —13.6 eV. Answer:

E 8 ,,7,1 62 1so 13, 11 ¢ 14
(H)=,——x6+yﬁ(_x + 2x —i—ix_v—ix.v—gx)’ +§f‘-.\’ —5)' :

where x = Z| + Z; and y = 24/Z| Z>. Chandrasekhar used Z; = 1.039 (since
this is larger than 1, the motivating interpretation as an effective nuclear charge
cannot be sustained, but never mind—it’s still an acceptable trial wave function)
and Z, = 0.283.

Problem 7.19 The fundamental problem in harnessing nuclear fusion is getting
the two particles (say, two deuterons) close enough together for the attractive (but
short-range) nuclear force to overcome the Coulomb repulsion. The “bulldozer”
method is to heat the particles up to fantastic temperatures, and allow the random
collisions to bring them together. A more exotic proposal is muon catalysis, in
which we construct a “hydrogen molecule ion,” only with deuterons in place of
protons, and a muon in place of the electron. Predict the equilibrium separation
distance between the deuterons in such a structure, and explain why muons are
superior to electrons for this purpose.!”

* % xProblem 7.20 Quantum dots. Consider a particle constrained to move in two
dimensions in the cross-shaped region shown in Figure 7.8. The “arms™ of the
cross continue out to infinity. The potential is zero within the cross, and infinite in
the shaded areas outside. Surprisingly, this configuration admits a positive-energy
bound state.!®

(a) Show that the lowest energy that can propagate off to infinity is

71.2,72

Einreshold = —
restio 8ma?

any solution with energy /ess than that has to be a bound state. Hint: Go way
out one arm (say, x > a), and solve the Schrddinger equation by separation
of variables; if the wave function propagates out to infinity, the dependence
on x must take the form exp(ikyx) with k; > 0.

7 The classic paper on muon-catalyzed fusion is J. D, Jackson. Phys. Rev. 106, 330 (1957): for a
more recent popular review, see J. Rafelski and S. Jones, Scientific American, November 1987, page 84.

'8This model is taken from R, L. Schult e al.. Phys. Rev. B 39, 5476 (1989). In the presence
of quantum tunneling a classically bound state becomes unbound; this is the reverse: A classically
nnbound state is quantum mechanically bound.
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xyY

FIGURE 7.8: The cross-shaped region for Problem 7.20.

(b) Now use the variational principle to show that the ground state has energy less

than Ereshold- Use the following trial wave function (suggested by Krishna
Rajagopal):

(1 —|xyl/a®)e™, |x|<a and |y|<a
(1 — |x|/a)e=P/a  |x| <a and |y|>a
(1 —|yl/a)e=®*Va, |x| >a and |y| <a
0, elsewhere.

v, y)=A

Normalize it to determine A, and calculate the expectation value of H.
Answer:

(H)

_3h% (a? +20+3
" ma? 6+ 1lla

Now minimize with respect to «, and show that the result is less than
Enreshold- Hint: Take full advantage of the symmetry of the problem—you
only need to integrate over 1/8 of the open region, since the other 7 inte-
grals will be the same. Note however that whereas the trial wave function is
continuous, its derivatives are not—there are “roof-lines” at x = 0, y = 0,
x = Ta,and y = T a, where you will need to exploit the technique of
Example 7.3.




CHAPTER 8

THE WKB APPROXIMATION

The WKB (Wentzel, Kramers, Brillouin)! method is a technique for obtaining
approximate solutions to the time-independent Schrédinger equation in one dimen-
sion (the same basic idea can be applied to many other differential equations, and
to the radial part of the Schrodinger equation in three dimensions). It is particu-
larly useful in calculating bound state energies and tunneling rates through potential
barriers.

The essential idea is as follows: Imagine a particle of energy E moving through
a region where the potential V (x) is constant. If E > V, the wave function is of
the form

Y(x) = AeT™  with k = /2m(E — V)/h.

The plus sign indicates that the particle is traveling to the right, and the minus sign
means it is going to the left (the general solution, of course, is a linear combination
of the two). The wave function is oscillatory, with fixed wavelength (A = 27/ k) and
unchanging amplitude (A). Now suppose that V (x) is not constant, but varies rather
slowly in comparison to A, so that over a region containing many full wavelengths
the potential is essentially constant. Then it is reasonable to suppose that ¥y remains
practically sinusoidal, except that the wavelength and the amplitude change slowly
with x. This is the inspiration behind the WKB approximation. In effect, it identifies
two different levels of x-dependence: rapid oscillations, modulated by gradual
variation in amplitude and wavelength.

'In Holland it's KWB. in France it’s BWK, and in England it's JWKB (for Jeffreys).
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By the same token, if E < V (and V is constant), then { is exponential:

Y(x) = AeT**.  with k = /2m(V — E)/h.

And if V(x) is not constant, but varies slowly in comparison with 1/«, the solu-
tion remains practically exponential, except that A and x are now slowly-varying
functions of x.

Now, there is one place where this whole program is bound to fail, and that is
in the immediate vicinity of a classical turning point, where E = V. For here A (or
1/k) goes to infinity, and V (x) can hardly be said to vary “slowly” in comparison.
As we shall see, a proper handling of the turning points is the most difficult aspect
of the WKB approximation, though the final results are simple to state and easy to
implement.

8.1 THE “CLASSICAL” REGION

The Schrédinger equation,

hZ d2¢
— V(x)y = EY,
2m dx? VY v,
can be rewritten in the following way:
dzl,b‘ p2
= -y, 8.1
x? = 84
where
p(x) = /2m[E — V(x)] [8.2]

is the classical formula for the momentum of a particle with total energy E and
potential energy V (x). For the moment, I'll assume that E > V(x), so that p(x)
is real; we call this the “classical” region, for obvious reasons—classically the
particle is confined to this range of x (see Figure 8.1). In general, ¥ is some
complex function; we can express it in terms of its amplitude, A(x). and its phase,
¢ (x)—both of which are real:

VU (x) = A(x)e'®™), [8.3]

Using a prime to denote the derivative with respect to x, we find:

d .
ay _ (A +iAg)e™.
dx

and ,
d- / . " / ]
dxf =[A" + 2049 +iA¢" — A@)]e'?. [8.4]
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Turning points

Classicr;ll region
FIGURE 8.1: Classically, the particle is confined to the region where E > V(x).

Putting this into Equation 8.1:

2
A" +2iA¢ +iAd" - A = -2 A [8.5]

This is equivalent to two real equations, one for the real part and one for the
imaginary part:

2 2
A" — A = —;’—2,4. or A=A [(gb')z - ;’—,] . [8.6]
and ,
24'¢' + Ap” =0. or (A2¢’) — 0. 8.7]

Equations 8.6 and 8.7 are entirely equivalent to the original Schrodinger
equation. The second one is easily solved:

A’¢'=C: or A= —\/% [8.8]

where C is a (real) constant. The first one (Equation 8.6) cannot be solved in
general—so here comes the approximation: We assume that the amplitude A varies
slowly, so that the A” term is negligible. (More precisely, we assume that A”/A
is much less than both (¢)% and p?/h>.) In that case we can drop the left side of
Equation 8.6, and we are left with

(@) =

or

(9]

mlhclu

Sl
I
H

=r |z
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and therefore

1
o(x) = iﬁ f p(x)dx. [8.9]

(I'll write this as an indefinite integral, for now—any constants can be absorbed
into C, which may thereby become complex.) It follows that

ot i [P dx [8.10]

. C
Y(x) = 6] )

and the general (approximate) solution will be a linear combination of two such
terms, one with each sign.
Notice that

IC|*

px)’

which says that the probability of finding the particle at point x is inversely pro-
portional to its (classical) momentum (and hence its velocity) at that point. This is
exactly what you would expect—the particle doesn’t spend long in the places where
it is moving rapidly, so the probability of getting caught there is small. In fact, the
WKB approximation is sometimes derived by starting with this “semi-classical”
observation, instead of by dropping the A” term in the differential equation. The
latter approach is cleaner mathematically, but the former offers a more plausible
physical rationale.

W (x)])> = [8.11]

Example 8.1 Potential well with two vertical walls. Suppose we have an infi-
nite square well with a bumpy bottom (Figure 8.2):

Vix) = [8.12]

some specified function, if 0 < x <a,
otherwise.

V(x) A

’\/\

a

xY

FIGURE 8.2: Infinite square well with a bumpy bottom.
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Inside the well (assuming E > V (x) throughout) we have

Yx) = [C+ei¢(x) + C_e_i‘f’("')'] .

i
v p(x)

or, more conveniently,

rx) = —\/% [Cising(x) + Cacos(x)], [8.13]

where (exploiting the freedom noted earlier to impose a convenient lower limit on
the integral)

l X
o(x) = —f p(xydx'. [8.14]
R Jo

Now ¥ (x) must go to zero at x = 0, and therefore (since ¢ (0) = 0) C; = 0. Also,
W (x) goes to zero at x =a, SO

p@=nnm (n=1,2.3,...). [8.15]

Conclusion:

f p(x)dx = nmh. [8.16]
0

This quantization condition determines the (approximate) allowed energies.
For instance, if the well has a flar bottom (V (x) = 0), then p(x) = v/2mE (a
constant), and Equation 8.16 says pa = nmh, or

V22
nlmrht
En —

2ma?

which is the old formula for the energy levels of the infinite square well
(Equation 2.27). In this case the WKB approximation yields the exact answer (the
amplitude of the true wave function is constant, so dropping A” cost us nothing).

xProblem 8.1 Use the WKB approximation to find the allowed energies (E,) of
an infinite square well with a *“shelf,” of height Vp extending half-way across
(Figure 6.3):

Vo. if0<x <a/2.
Vix)=4¢ 0, 1ifa/2<x<a,
0o, otherwise.
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Express your answer in terms of Vy and E,? = (rzyrh)z/Zma2 (the nth allowed
energy for the infinite square well with no shelf). Assume that E(l) > Vp, but do
not assume that E, > V. Compare your result with what we got in Example 6.1
using first-order perturbation theory. Note that they are in agreement if either Vj is
very small (the perturbation theory regime) or n is very large (the WKB— semi-
classical—regime).

% %xProblem 8.2 An illuminating alternative derivation of the WKB formula
(Equation 8.10) is based on an expansion in powers of #. Motivated by the free-
particle wave function, ¥ = A exp(Lipx/h), we write

w (.\') — eif(x)/ﬁ .

where f(x) is some complex function. (Note that there is no loss of generality
here—any nonzero function can be written in this way.)

(a) Put this into Schrédinger’s equation (in the form of Equation 8.1), and show
that

ihf" = (f)+p*=0.
(b) Write f(x) as a power series in #:

F@) = fox) +fi(x) + 2 fa(x) + -+,

and, collecting like powers of h, show that
r=ph ify =2Rf ifl =28 f+ (DY et

(c) Solve for fp(x) and f)(x), and show that—to first order in #—you recover
Equation 8.10.

Note: The logarithm of a negative number is defined by In(—z) = In(z) + inm,
where n is an odd integer. If this formula is new to you, try exponentiating both
sides, and you’ll see where it comes from.

8.2 TUNNELING

So far, I have assumed that E > V, so p(x) is real. But we can easily write down
the corresponding result in the nonclassical region (E < V)—it’s the same as
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before (Equation 8.10), only now p(x) is imaginary:?

~ € 4l Ipoldx |
v el : [8.17)

Consider, for example, the problem of scattering from a rectangular barrier
with a bumpy top (Figure 8.3). To the left of the barrier (x < 0),

Y(x) = Ae™ 4 Be ¥, [8.18]

where A is the incident amplitude, B is the reflected amplitude, and k = +/2mE /h
(see Section 2.5). To the right of the barrier (x > a),

Y(x) = Fe'™; [8.19]

F is the transmitted amplitude, and the transmission probability is

|F|?
T = . 8.20
AL [8.20]
In the tunneling region (0 < x < a), the WKB approximation gives
w(x) = ———C e%-m‘ Gl da’ + b e_“g "’(""”dxl. [8.21]

Vip(X)| [p(x)]

V(x) A
E
..__>A
ey 51 — F
0 a >x

FIGURE 8.3: Scattering from a rectangular barrier with a bumpy top.

2In this case the wave function is real, and the analogs to Equations 8.6 and 8.7 do not follow
necessarily from Equation 8.5, although they are still sufficient. If this bothers you, study the alternative
derivation in Problem 8.2,
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J\

FIGURE 8.4: Qualitative structure of the wave function, for scattering from a high,
broad barrier.

S
<>
/]

If the barrier is very high and/or very wide (which is to say, if the probability
of tunneling is small), then the coefficient of the exponentially increasing term (C)
must be small (in fact, it would be zero if the barrier were infinitely broad), and
the wave function looks something like® Figure 8.4. The relative amplitudes of the
incident and transmitted waves are determined essentially by the total decrease of
the exponential over the nonclassical region:

| F| —%./5' [px)dx’

._.f\.ae

|A|

so that

1 a
T=e %, withy = - f |p(x)| dx. [8.22]
0

Example 8.2 Gamow’s theory of alpha decay.* In 1928, George Gamow (and,
independently, Condon and Gurney) used Equation 8.22 to provide the first success-
ful explanation of alpha decay (the spontaneous emission of an alpha-particle—two
protons and two neutrons—by certain radioactive nuclei).® Since the alpha particle
carries a positive charge (2e), it will be electrically repelled by the leftover nucleus
(charge Ze), as soon as it gets far enough away to escape the nuclear binding
force. But first it has to negotiate a potential barrier that was already known (in the
case of uranium) to be more than twice the energy of the emitted alpha particle.
Gamow approximated the potential energy by a finite square well (representing
the attractive nuclear force), extending out to r| (the radius of the nucleus), joined

3This heuristic argument can be made more rigorous—see Problem 8.10.

*For a more completc discussion. and alternative formulations. see Barry R. Holstein.
Am. J. Phys. 64, 1061 (1996).

>For an interesting brief history see Eugen Merzbacher, “The Early History of Quantum Tun-
neling.” Physics Today. August 2002, p. 44.
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Coulomb repuision

h I r

_— Nuclear binding

v 1

FIGURE 8.5: Gamow’s model for the potential energy of an alpha particle in a
radioactive nucleus.

to a repulsive coulombic tail (Figure 8.5), and identified the escape mechanism as
quantum tunneling (this was, by the way, the first time that quantum mechanics
had been applied to nuclear physics).
If E is the energy of the emitted alpha particle, the outer turning point (r2) is
determined by
1 2Zé

drey 1

=E. [8.23]
The exponent y (Equation 8.22) is evidently®

1 [ 1 2Ze? V2mE [ [r
yz—f 2771( ¢ —E)dr: " f ‘ 7—2—ldr.
hJy 4meg 1 h " r

The integral can be done by substitution (let r = r2 sin? 1), and the result is

,_ Y2mE [,.2 (% ! \/:I ) _ m] S 824]

h

Typically, r; <« r2, and we can simplify this result using the small angle approxi-
mation (sine = ¢):

J2mE Z J
o~ m [7_;_’.2 _ 2m:| — KI:/—E — Kx\/Zr. [8.25]

61n this case the potential does not drop to zero on the left side of the barrier (imorcover, this is
really a three-dimensional problem). but the essential idea. contained in Equation 8.22. is all we really
nced.
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where

i |
K| = ( ¢ VIV 1.980 MeV'/2. 8.26]
4 eq h

and

— 1.485 fm~1/%. [8.27]

K, ( ? )‘/24\/;7;

47 e h

[One fermi (fm) is 10~'° m, which is about the size of a typical nucleus.]

If we imagine the alpha particle rattling around inside the nucleus, with an
average velocity v, the average time between “collisions” with the “wall” is about
2r1 /v, and hence the frequency of collisions is v/2r;. The probability of escape at
each collision is ¢=27, so the probability of emission, per unit time, is (v/ 2r)e” %,
and hence the lifetime of the parent nucleus is about

2ry
v

e [8.28]

Unfortunately, we don’t know v—Dbut it hardly matters, for the exponential factor
varies over a fantastic range (twenty-five orders of magnitude), as we go from
one radioactive nucleus to another: relative to this the variation in v is pretty
insignificant. In particular, if you plot the logarithm of the experimentally measured
lifetime against 1/+/E, the result is a beautiful straight line (Figure 8.6),” just as
you would expect from Equations 8.25 and 8.28.

*Problem 8.3 Use Equation 8.22 to calculate the approximate transmission prob-
ability for a particle of energy E that encounters a finite square barrier of height
Vo > E and width 2a. Compare your answer with the exact result (Problem 2.33),
to which it should reduce in the WKB regime 7 « 1.

+ xProblem 8.4 Calculate the lifetimes of U2 and Po?!2, using Equations 8.25 and
8.28. Hint: The density of nuclear matter is relatively constant (i.e., the same for
all nuclei), so (r1)? is proportional to A (the number of neutrons plus protons).
Empirically,

ri = (1.07 fm)A'/3, [8.29]

"From David Park. Introduction to the Quantum Theory, 3rd ed., McGraw-Hill (1992); it was
adapted from I. Perlman and J. O. Rasmussen, “Alpha Radioactivity,” Encyclopedia of Physics. Vol. 42,
Springer (1957). This material is reproduced with permission of The McGraw-Hill Companies.
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FIGURE 8.6: Graph of the logarithm of the lifetime versus 1/+E (where E is the
energy of the emitted alpha particle), for uranium and thorium.

The energy of the emitted alpha particle can be deduced by using Einstein’s formula
(E = me?):
E = m,,c2 — m(/c2 — g’ [8.30]

where m p, is the mass of the parent nucleus, m, is the mass of the daughter nucleus,
and m, is the mass of the alpha particle (which is to say, the He* nucleus). To
figure out what the daughter nucleus is, note that the alpha particle carries off two
protons and two neutrons, so Z decreases by 2 and A by 4. Look up the relevant
nuclear masses. To estimate v, use £ = (Il /2)mo,v2; this ignores the (negative)
potential energy inside the nucleus, and surely underestimates v, but it’s about the
best we can do at this stage. Incidentally, the experimental lifetimes are 6 x 10°
yrs and 0.5 us, respectively.

8.3 THE CONNECTION FORMULAS

In the discussion so far I have assumed that the “walls’™ of the potential well (or
the barrier) are vertical, so that the “exterior” solution is simple, and the boundary
conditions trivial. As it turns out, our main results (Equations 8.16 and 8.22) are
reasonably accurate even when the edges are not so abrupt (indeed, in Gamow’s
theory they were applied to just such a case). Nevertheless, it is of some interest
to study more closely what happens to the wave function at a turning point (£ =
V), where the “classical” region joins the “nonclassical” region, and the WKB
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Linearized
potential
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X
Classical 0 Nonclassical
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FIGURE 8.7: Enlarged view of the right-hand turning point.

approximation itself breaks down. In this section I'll treat the bound state problem

(Figure 8.1); you get to do the scattering problem for yourself (Problem 8.10).8
For simplicity, let’s shift the axes over so that the right-hand turning point

occurs at x = 0 (Figure 8.7). In the WKB approximation, we have |

\/(_ /1:) ple')dx’ + Ce—;—"-/.‘(') P’ ‘["":I , ifx <0,
2 ()
vo={ v o

T ( 3 Jo POl if x > 0.
px

(Assuming V (x) remains greater than E for a/l x > 0, we can exclude the positive
exponent in this region, because it blows up as x — oc0.) Our task is to join the
two solutions at the boundary. But there is a serious difficulty here: In the WKB
approximation, ¥ goes to infinity at the turning point (where p(x) — 0). The true
wave function, of course, has no such wild behavior—as anticipated, the WKB
method simply fails in the vicinity of a turning point. And yet, it is precisely the
boundary conditions at the turning points that determine the allowed energies. What
we need to do, then, is splice the two WKB solutions together, using a “patching”
wave function that straddles the turning point.

Since we only need the patching wave function () in the neighborhood of
the origin, we’ll approximate the potential by a straight line:

V(x) = E+ V'(0)x. [8.32]

SWaming: The following argument is quite 1echnical, and you may wish to skip it on a first
reading.
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and solve the Schrédinger for this linearized V:

n* d*y, O
“om dx2 TLIE+V O, = Evp,
or 7
d~yp
d\.zl =a?-‘_‘ﬁps
where B
o= [@ V’(O)]
h_

so that

327

[8.33]

[8.34]

[8.35]

[8.36]

This is Airy’s equation, and the solutions are called Airy functions.” Since the
Airy equation is a second-order differential equation, there are two linearly inde-

pendent Airy functions, Ai(z) and Bi(z).

TABLE 8.1: Some properties of the Airy functions.

2
d-y
S =2y

az-

Differential Equation:

Solutions: Linear combinations of Airy Functions, Ai(z) and Bi(z).

Integral Representation:

o l o O ‘ s3 )
Ai(z) = T cos | =+ sz }ds,
0

3
L[] 5*
Bi(z)= EJ [e“.T MEEE sin(g + s:)]ds.
. 0
Asymptotic Forms:
: 1 .z . 1 . ]2 3y T
Ai(Z) ~ =€ 3 Ai(z) ~ ————7sin [—(—:,)' -+ —]
IV A _ M 3 4
SNTE >0 VR(=2) 0.
. I3 . 1 2 K

[ . . . - N

)Cla.s‘.s'urally. a linear potential means a constant force. and hence a constant acceleration—the
simplest nontrivial motion possible. and the srarting point for clementary mechanics. It is ironic that
the same potential in quantum mechanics gives rise to unfamiliar transcendental functions. and plays

only a peripheral role in the theory.
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FIGURE 8.8: Graph of the Airy functions.

They are related to Bessel functions of order 1/3; some of their properties are
listed in Table 8.1 and they are plotted in Figure 8.8. Evidently the patching wave
function is a linear combination of Ai(z) and Bi(z):

Vp(x) = aAi(ax) + bBi(ax). [8.37]

for appropriate constants a and b.

Now 1, is the (approximate) wave function in the neighborhood of the origin:
our job is to match it to the WKB solutions in the overlap regions on either side
(see Figure 8.9). These overlap zones are close enough to the turning point that the
linearized potential is reasonably accurate (so that ¥, is a good approximation to
the true wave function), and yet far enough away from the turning point that the
WKB approximation is reliable.!” In the overlap regions Equation 8.32 holds, and
therefore (in the notation of Equation 8.34)

p(x) = /2m(E — E — V' (0)x) = ha*/*/=x. [8.38]

In particular, in overlap region 2,

Ry v 2
f Ip(x")dx' = ﬁa3/2f Vx'dx' = Eh(_ax)?‘/z,
0 0 3

'OThis is a delicate double constraint, and it is possible to concoct potentials so pathological that
no such overlap region exists. However, in practical applications this seldony occurs. Sce Problem §.8.
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FIGURE 8.9: Patching region and the two overlap zones.

and therefore the WKB wave function (Equation 8.31) can be written as

372

Yix) = —3 () 8.39]

——¢
VA3 x /4
Meanwhile, using the large-z asymptotic forms'' of the Airy functions (from

Table 8.1), the patching wave function (Equation 8.37) in overlap region 2 becomes

b
+ ﬁ(ax)l/tl ¢

11

/2

Tt 8.40]

—3(ax)}”?

‘/fp (x) =

a
2/ (ax) /4

Comparing the two solutions, we see that

4
a= 2D, and b=0. [8.41]
akli

Now we go back and repeat the procedure for overlap region 1. Once again,
p(x) is given by Equation 8.38, but this time x is negative, so

0 2
f p(x")dx' = gh(—a.x')3/2 [8.42]
X

and the WKB wave function (Equation 8.31) is

vx) = [Be" Ha0)? | o %<—a~ﬂ""3] . [8.43]

JRa3IH(—x)1/4

HUAL first glance it scems absurd to use a large-z approximation in this region, which after all is
supposed to be reasonably close to the turning point at 7 = 0 (so that the linear approximation to the
potential is valid). Bul notice that the argument here is ax. and if you study the matter carefully (see
Problem 8.8) vou will find that there iy (typically) a region in which ax is large, but at the same time
it is reasonable to approximate V (x) by a straiglt line.
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Meanwhile, using the asymptotic form of the Airy function for large negative z
(Table 8.1), the patching function (Equation 8.37. with b = 0) reads

1”1;(-\')—\/—(_ )1/ Sin [2( —ax)¥? Z]

a 1 im/d i3 2 (—ax )2 —iw /4 —i 3 (—ax)¥?
\/I-F(—m)l/‘* 2/ [ e —e e 7 ] [8.44]

Comparing the WKB and patching wave functions in overlap region 1, we find

a4 s B T4 imm_ C
2i /T ha 2i /T ha
or, putting in Equation 8.41 for a:
B=—ie"/*D, and C=ie "D, [8.45]

These are the so-called connection formulas, joining the WKB solutions at either
side of the turning point. We’'re done with the patching wave function now—its
only purpose was to bridge the gap. Expressing everything in terms of the one
normalization constant D, and shifting the turning point back from the origin to an
arbitrary point x;, the WKB wave function (Equation 8.31) becomes

2D sinlil /*x: p(x"ydx' + E} if x < xa;
Jp o Lh S 4] T
po=q VF (‘) ’ [8.46)

I:——f Ip(\)lcl\} if x > xz.
lp(\

Example 8.3 Potential well with one vertical wall. Imagine a potential well
that has one vertical side (at x = 0) and one sloping side (Figure 8.10). In this
case ¥ (0) = 0, so Equation 8.46 says

1 [+ T
Ef p(x)dx + 1 =nm. (n=12.3...).
0

or

X 1
f plx)dx = (n — —) mh. [8.47]
0 4
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X2 ;
FIGURE 8.10: Potential well with one vertical wall.
For instance, consider the “half-harmonic oscillator,”
1 55
—mow-x-. if x>0,
Vix) = [8.48]
0. otherwise.

In this case

plx) = \Em[E — (1/2)mw?x3] = mw xg —x2,

where
1 /2F
X2 =—,/—
wY m

is the turning point. So
12 12 T mE
f p(x)dx = mwf Jx? = x2dx = “maox
0 0 - 4

and the quantization condition (Equation 8.47) yields

] 3 7 11
E, = (2)1— 5) ho = (5. 5. ?)hw [8.49]

In this particular case the WKB approximation actually delivers the exact allowed
energies (which are precisely the odd energies of the ful/l harmonic oscillator—see

2w

[N ]

Problem 2.42).
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Example 8.4 Potential well with no vertical walls. Equation 8.46 connects the
WKB wave functions at a turning point where the potential slopes upward
(Figure 8.11(a)); the same reasoning, applied to a downward-sloping turning point
(Figure 8.11(b)), yields (Problem 8.9)

= [ : f T lpaidx |
exp| —— |p(xD))dx" |, if x <xp:
ool DLk,

2D" . [1 /"" b JT:I _
sin | — n(x)dx'+ —|. ifx>x|.
NG R LY !

In particular, if we’re talking about a potential well (Figure 8.11(c)), the wave
function in the “interior” region (x¥] < x < x2) can be written either as

Y(x) = [8.50]

R}

D 1 2
sin@(x). where 6,(x) = — f p(xydx' + z.
p(x) hJy 4

Y(x) =

(Equation 8.46), or as

/ X

' T
Ndx' — —.
p(x)dx 2

Vpx)

(Equation 8.50). Evidently the arguments of the sine functions must be equal, mod-
ulo 7:!12 6, = 6, + nrx. from which it follows that

Y(x) =

1
sinf;(x). where 0;(x) = _Ef

X

A 1
f p(x)dx = (n — 5) mh., withn=1.2,3,.... [8.51]
X

Xy

AV(x) |
E // E \\ E \\//
Xy X4 X4 Xy
3
(@) (b) (©)

FIGURE 8.11: Upward-sloping and downward-sloping turning points.

2Not 2 —an overall minus sign can be absorbed into the normalization factors D and D'.
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This quantization condition determines the allowed energies for the “typical”
case of a potential well with two sloping sides. Notice that it differs from the
formulas for two vertical walls (Equation 8.16) or one vertical wall (Equation 8.47)
only in the number that is subtracted from n (0, 1/4, or 1/2). Since the WKB
approximation works best in the semi-classical (large 77) regime, the distinction is
more in appearance than in substance. In any event, the result is extraordinarily
powerful, for it enables us to calculate (approximate) allowed energies withour ever
solving the Schrodinger equation, by simply evaluating one integral. The wave
function itself has dropped out of sight.

x xProblem 8.5 Consider the quantum mechanical analog to the classical problem of
a ball (mass m) bouncing elastically on the floor.!3

(a) What is the potential energy, as a function of height x above the floor? (For
negative x, the potential is infinite—the ball can’t get there at all.)

(b) Solve the Schrédinger equation for this potential, expressing your answer in
terms of the appropriate Airy function (note that Bi(z) blows up for large z,
and must therefore be rejected). Don’t bother to normalize ¥ (x).

(c) Using g = 9.80 m/s? and m = 0.100 kg, find the first four allowed energies,
in joules, correct to three significant digits. Hint: See Milton Abramowitz and
Irene A. Stegun, Handbook of Mathematical Functions, Dover, New York
(1970), page 478; the notation is defined on page 450.

(d) What is the ground state energy, in eV, of an electron in this gravitational
field? How high off the ground is this electron, on the average? Hint: Use
the virial theorem to determine {x).

xProblem 8.6 Analyze the bouncing ball (Problem 8.5) using the WKB approxi-
mation.

(a) Find the allowed energies, E,, in terms of m, g, and .

(b) Now put in the particular values given in Problem 8.5(c). and compare the
WKB approximation to the first four energies with the “exact™ results.

(c) About how large would the quantum number » have to be to give the ball
an average height of, say, I meter above the ground?

I3For more on the quantum bouncing ball see J. Gea-Banacloche, Am. J. Phys. 67, 776 (1999) and -
N. Wheeler, “Classical/quantum dynamics in a uniform gravitational field.” unpublished Reed College E
report (2002). This may sound like an awf{ully artificial problem, but the experiment has actually been
done. using neutrons (V. V. Nesvizhevsky et al., Nature 415, 297 (2002)).
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*xProblem 8.7 Use the WKB approximation to find the allowed energies of the
harmonic oscillator.

Problem 8.8 Consider a particle of mass m in the nth stationary state of the
harmonic oscillator (angular frequency w).

(a) Find the turning point, x3.

(b) How far (d) could you go above the turning point before the error in the
linearized potential (Equation 8.32, but with the turning point at x») reaches
1%? That is, if

V(xs+d) — Viip(x2 +d)

= 0.01,
V(x2)

what is d?

(c}) The asymptotic form of Ai(z) is accurate to 1% as long as z > 5. For the d
in part (b), determine the smallest n such that d > 5. (For any n larger than
this there exists an overlap region in which the linearized potential is good
to 1% and the large-z form of the Airy function is good to 1%.)

* xProblem 8.9 Derive the connection formulas at a downward-sloping turning
point, and confirm Equation 8.50.

* % xProblem 8.10 Use appropriate connection formulas to analyze the problem of
scattering from a barrier with sloping walls (Figure 8.12). Hint: Begin by writing
the WKB wave function in the form

] L oy di LY ey i’
Aeﬁj-v plx’) dx + Be—ﬁ-/»\' plx’)dx :| . (x < x1):
v p(x) [
1 L plahy dy! ~ L pay dy’
Y(x)= Ce®/u + De T ,(x] <x < x)
VIp(x)|
] Loy 1 4t
N [Fe” Jiy P dx } . (x > x2).  [8.52]
Do not assume C = 0. Calculate the tunneling probability, T = |F|*/|AJ?,

and show that your result reduces to Equation 8.22 in the case of a broad, high
barrier.
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Xo X

FIGURE 8.12: Barrier with sloping walls.

FURTHER PROBLEMS FOR CHAPTER 8

* xProblem 8.11 Use the WKB approximation to find the allowed energies of the
general power-law potential:

V(x) =alx|”.

where v is a positive number. Check your result for the case v = 2. Answer: 14

13y ()
= F ﬁz)
E,=a|n—1/2)h . [8.53]
2mao 1
r( +1)

* xProblem 8.12 Use the WKB approximation to find the bound state energy for the

potential in Problem 2.51. Compare the exact answer. Answer: —[(9/8) — (1/+/2)]
na?/m.

Problem 8.13 For spherically symmetrical potentials we can apply the WKB
approximation to the radial part (Equation 4.37). In the case / = O it is reasonable'?
to use Equation 8.47 in the form

f ! pr)ydr=m—1/4)h, [8.54]
0

4 As always. the WKB result is most accurate in the semi-classical (large n) regime. In particular,
Equation 8.53 is not very good for the ground state (n = 1). See W. N. Mei. Am. J. Phys. 66, 541 (1998).

IS Application of the WKB approximation to the radial equation raises some delicate and subtle
problems. which I will not go into here. The classic paper on the subject is R. Langer. Phys. Rev. 51,
669 (1937).
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where rg is the turning point (in effect, we treat » = 0 as an infinite wall).
Exploit this formula to estimate the allowed energies of a particle in the logarithmic
potential

V(r) = Voln(r/a)

(for constants Vjy and a). Treat only the case I = 0. Show that the spacing between
the levels is independent of mass. Partial answer:

n+3/4\
n—1/4/)"

Eyy) — Ep=Wln (

* xProblem 8.14 Use the WKB approximation in the form

(i)
f p(rydr=n —1/2)mh [8.55]
ry

to estimate the bound state energies for hydrogen. Don’t forget the centrifugal term
in the effective potential (Equation 4.38). The following integral may help:

b
%\/(.\' —a)(b—x)dx = %(\/I_ — Ja)t. [8.56]

a -

Note that you recover the Bohr levels when #» > [ and n > 1/2. Answer:

E —13.6 eV (8.57]
" - (/2 + JITF DR |

* % xProblem 8.15 Consider the case of a symmetrical double well, such as the one
pictured in Figure 8.13. We are interested in bound states with £ < V(0).

(a) Write down the WKB wave functions in regions (1) x > xa, (ii) x| < x < xa,
and (iii) 0 < x < xj. Impose the appropriate connection formulas at x| and
x2 (this has already been done, in Equation 8.46, for x»; you will have to
work out x; for yourself), to show that

[——f |p(x )Idx] (i)
Ip(x

2D A

[2 cos ae%f\-r' [p(x))da’ + sin ge—%f{,“ |1’(x')|(1-\":|_ (iii)

D
VIp(x)]
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X
& [ -
Y

FIGURE 8.13: Symmetrical double well; Problem 8.15.

where

h

(b) Because V(x) is symmetric, we need only consider even (+) and odd (—)
wave functions. In the former case ¥/(0) = 0, and in the latter case ¥ (0) = 0.
Show that this leads to the following quantization condition:

] X2
g = —f p(x)dx. [8.58]
X

tan9 = *2¢%. [8.59]

where "
¢ = - f |p(x"y|dx’. [8.60]

h —X]

Equation 8.59 determines the (approximate) allowed energies (note that E
comes into x| and x2, so 6 and ¢ are both functions of E).

(c) We are particularly interested in a high and/or broad central barrier, in which
case ¢ is large, and ¢? is huge. Equation 8.59 then tells us that 8 must be
very close to a half-integer multiple of &. With this in mind, write 8 =
(n + 1/2)m + €. where |¢| <« 1, and show that the quantization condition
becomes

1 1
~ _ _.—®
9_(n+2)71':}:2(, . [8.61]

(d) Suppose each well is a parabola:'®

1
Emwz(.\' +a)?, ifx <O.
Vix) = [8.62]

2 2 .
Emw'(;\' —a)-, ifx>0.

6Even if V(x) is not strictly parabolic in each well. this calculation of 6. and hence the result
(Equation 8.63) will be approximatelv correct. in the sense discussed at the beginning of Section 2.3,
with w = /V"(xg)/m. where . is the position of the minimum.
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Sketch this potential, find 8 (Equation 8.58), and show that

! h
EF = (n + —) ho T 2269, 8.63]
2 27

Comment: If the central barrier were impenetrable (¢ — o0), we would
simply have two detached harmonic oscillators, and the energies, E, = (n +
1/2)hw, would be doubly degenerate, since the particle could be in the left
well or in the right one. When the barrier becomes finite (putting the two wells
into “communication”), the degeneracy is lifted. The even states W,?L) have
slightly lower energy, and the odd ones (i,) have slightly higher energy.

Suppose the particle starts out in the right well—or, more precisely, in a
state of the form

S0 = gt 4y
W(.\,O)_ﬁ(t/f,,—i—xb,,).

which, assuming the phases are picked in the “natural” way, will be concen-
trated in the right well. Show that it oscillates back and forth between the
wells, with a period

T=—2e". [8.64]

Calculate ¢, for the specific potential in part (d), and show that for V(0) > E,
¢ ~ mwa’/h.

Problem 8.16 Tunneling in the Stark effect. When you turn on an external elec-
tric field, the electron in an atom can, in principle, tunnel out, ionizing the atom.
Question: Is this likely to happen in a typical Stark effect experiment? We can
estimate the probability using a crude one-dimensional model, as follows. Imagine
a particle in a very deep finite square well (Section 2.6).

(a)

(b)

What is the energy of the ground state, measured up from the bottom of the
well? Assume Vy >> h%/ma>. Hint: This is just the ground state energy of
the infinite square well (of width 2a).

Now introduce a perturbation H' = —ax (for an electron in an electric
field E = —E.x we would have o = ¢E.y). Assume it is relatively weak
(@a <« h*/ma?). Sketch the total potential, and note that the particle can
now tunnel out, in the direction of positive x.

Calculate the tunneling factor y (Equation 8.22), and estimate the time
it would take for the particle to escape (Equation 8.28). Answer: y =

J8mV33ah, T = 8ma?/nh)e” .
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(d) Put in some reasonable numbers: Vy = 20 eV (typical binding energy for an
outer electron), a = 10719 m (typical atomic radius), E¢q = 7 X 10 V/m
(strong laboratory field), e¢ and m the charge and mass of the electron. Cal-
culate 7, and compare it to the age of the universe.

Problem 8.17 About how long would it take for a can of beer at room temperature
to topple over spontaneously, as a result of quantum tunneling? Hint: Treat it as a
uniform cylinder of mass m, radius R, and length h. As the can tips, let x be the
height of the center above its equilibrium position (/2). The potential energy is
mngx, and it topples when x reaches the critical value xg = /R? + (h/2)2 — h/2.
Calculate the tunneling probability (Equation 8.22), for E = 0. Use Equation 8.28,
with the thermal energy (( 1/2)mv2 = (1/2)kgT) to estimate the velocity. Put in
reasonable numbers, and give your final answer in years.’7

I7R. E. Crandall, Scientific American, February 1997, p. 74.



CHAPTER 9

TIME-DEPENDENT
PERTURBATION THEORY

Up to this point, practically everything we have done belongs to the subject that
might properly be called quantum statics, in which the potential energy function is
independent of time: V (r.t) = V(r). In that case the (time-dependent) Schrédinger
equation,

Wy
oo —ine
at

can be solved by separation of variables:
W(r. 1) = Y(r)e E/R,
where ¥ (r) satisfies the time-independent Schrédinger equation,

Hy = Ey.

Because the time dependence of separable solutions is carried by the exponential
factor (e~*£!/), which cancels out when we construct the physically relevant quan-
tity |W|2, all probabilities and expectation values are constant in time. By forming
linear combinations of these stationary states we obtain wave functions with more
interesting time dependence, but even then the possible values of the energy, and
their respective probabilities, are constant.

If we want to allow for transitions (quantum jumps, as they are sometimes
called) between one energy level and another, we must introduce a time-dependent
potential (quantum dynamics). There are precious few exactly solvable problems

340
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in quantum dynamics. However, if the time-dependent portion of the Hamiltonian
is small compared to the time-independent part, it can be treated as a perturbation.
My purpose in this chapter is to develop time-dependent perturbation theory, and
study its most important application: the emission or absorption of radiation by
an atom.

9.1 TWO-LEVEL SYSTEMS

To begin with. let us suppose that there are just rwo states of the (unperturbed)
system, ¥, and v,. They are eigenstates of the unperturbed Hamiltonian, H?:

H%, = E,¥,. and HOY;, = Eyy,. [9.1]

and they are orthonormal:
(Vral¥rp) = dab- [9.2]

Any stale can be expressed as a linear combination of them; in particular,

V(0) = cy¥a + crin. [9.3]

The states ¥, and ¥, might be position-space wave functions, or spinors, or
something more exotic—it doesn’t matter; it is the time dependence that concerns
us here, so when I write W(r), I simply mean the state of the system at time ¢.
In the absence of any perturbation, each component evolves with its characteristic
exponential factor:

(1) = cupge B e e En/R, [9.4]

We say that |c,|* is the “probability that the particle is in state ¥,"—by which
we reallv mean the probability that a measurement of the energy would yield the
value E,. Normalization of W requires, of course, that

leal® + lep2 = 1. [9.5]

9.1.1 The Perturbed System

Now suppose we turn on a time-dependent perturbation. H'(t). Since ¥, and v,
constitute a complete set, the wave function W(r) can still be expressed as a linear
combination of them. The only difference is that ¢, and ¢; are now functions of t:

(1) = cu(D)Wge Bl o (D)ype  En/I, [9.6]

(I could absorb the exponential factors into ¢,(r) and ¢,(r), and some people
prefer to do it this way, but I think it is nicer to keep visible that part of the
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time dependence that would be present even without the perturbation.) The whole
problem is to determine ¢, and ¢}, as functions of time. If, for example, the particle
started out in the state ¥, (c,(0) = 1. ¢,(0) = 0), and at some later time ¢; we find
that ¢, (1) = 0, ¢,(t;) = 1, we shall report that the system underwent a transition

from ¥, to ¥
We solve for ¢, (t) and ¢;(t) by demanding that W (r) satisfy the time-dependent

Schrédinger equation,
0V 0 ,
HYV = 11‘1?. where H = H” + H'(1). [9.7]

From Equations 9.6 and 9.7, we find:

calHO% e Bt/ oy [HOY e P BT 4 e [H W Je ™ Eal /T oy [H y)e ™ Ent/T

— ih[éa¢"€_’E“’/h + ‘?,bwb()—l bl,[/ﬁ

iE _ iE\
+ caVa (—7") e_'E"’/h + ¥ (-_hli> e ’El”/h]'

In view of Equation 9.1, the first two terms on the left cancel the last two terms
on the right, and hence

Ca[H,wa]e_iE"I/ﬁ +Cb[H,¢I)]e_iEI’I/h =ih [(-"u wa(-’—iE"I/h +ébwbe_iEl’I/h:| . [9.8]

To isolate ¢,, we use the standard trick: Take the inner product with ,, and
exploit the orthogonality of v, and v, (Equation 9.2):

CalWalH' )™ 5 4 ey (Yol H'[yp)e ™ /T = ihéqe™ Fat /M,

For short, we define
HY; = (Wi | H'|¥;): [9.9]

note that the hermiticity of H’ entails HJ’.,. = (H,.’j.)*. Multiplying through by
—(i /h)e' !/ we conclude that:

i .
; . —i(E,—E Nt/
Ca = R [Ca H(,l(l +¢p H(IIIJ() HEs=Eq)tf ] . [9.10]

Similarly, the inner product with ¥, picks out ¢é;:
calVnlH'[Wade™ 5N ety | H' |yp)e ™ B0/ = ingpe=tErt/R,

and hence .
I . -
: Ey—Et/h
cp = h [chI;I) + Ca Hl:(’(_”(‘ ! 1/ ':I . [9.] ]]
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Equations 9.10 and 9.11 determine ¢,(t) and ¢;(t); taken together, they are
completely equivalent to the (time-dependent) Schrddinger equation, for a two-level
system. Typically, the diagonal matrix elements of H’ vanish (see Problem 9.4 for
the general case):

H,, = Hy, =0. [9.12]
If so, the equations simplify:
) I . ) i ,
Ca = '—F]H(:be ’wmcba Ch = _Engt'le’w“ICa. [9.13]
where £ E
wy = % [9.14]

(I’'ll assume that E, > E,, so wy > 0.)

xProblem 9.1 A hydrogen atom is placed in a (time-dependent) electric field E =

E (r)l:'. Calculate all four matrix elements H; ; of the perturbation H' = ¢E 7 between
the ground state (n = 1) and the (quadruply degenerate) first excited states (n = 2).
Also show that H;; = 0 for all five states. Note: There is only one integral to be
done here, if you exploit oddness with respect to z; only one of the n = 2 states
is “accessible” from the ground state by a perturbation of this form, and therefore
the system functions as a two-state configuration—assuming transitions to higher
excited states can be ignored.

*xProblem 9.2 Solve Equation 9.13 for the case of a time-independent perturbation,
assuming that ¢,(0) = 1 and ¢,(0) = 0. Check that |c,(1)]? + |ep(t)]? = 1.
Comment: Ostensibly, this system oscillates between “pure v,” and “some .”
Doesn’t this contradict my general assertion that no transitions occur for time-
independent perturbations? No, but the reason is rather subtle: In this case ¥, and
Y, are not, and never were, eigenstates of the Hamiltonian—a measurement of the
energy never yields E, or Ej. In time-dependent perturbation theory we typically
contemplate turning on the perturbation for a while, and then turning it off again,
in order to examine the system. At the beginning, and at the end, ¥, and ¥, are
eigenstates of the exact Hamiltonian, and only in this context does it make sense
to say that the system underwent a transition from one to the other. For the present
problem, then, assume that the perturbation was turned on at time r = 0. and
off again at time 1 —this doesn’t affect the calculations, but it allows for a more
sensible interpretation of the result.

* xProblem 9.3 Suppose the perturbation takes the form of a delta function (in time):

H' =Us@):
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assume that U,, = Up, = 0, and let Uy, = U, = a. If ¢(—00) = 1 and
cp(—00) = 0, find ¢, (1) and ¢ (r), and check that |c,(1)|? + |cp(1))> = 1. What is
the net probability (P,—,;, for t — o0) that a transition occurs? Hint: You might
want to treat the delta function as the limit of a sequence of rectangles. Answer:
Pysp = sin(la|/h).

9.1.2 Time-Dependent Perturbation Theory

So far, everything is exact: We have made no assumption about the size of the per-
turbation. But if H' is “small,” we can solve Equation 9.13 by a process of succes-
sive approximations, as follows. Suppose the particle starts out in the lower state:

c,(0)=1. ¢,(0)=0. [9.15]
If there were no perturbation at all, they would stay this way forever:

Zeroth Order: _
O =1, Qwy=o0. [9.16]

(I'll use a superscript in parentheses to indicate the order of the approximation.)
To calculate the first-order approximation, we insert the zeroth-order values
on the right side of Equation 9.13:

First Order:
(1
de
—=0= My =1
[¢
9.17
dc;)l) f Tt = (hH J f’ HI ( l) ia)ul'd’ [ ]
—_— e C, = —— t)e t.
dt k ba b B 0 ba

Now we insert these expressions on the right, to obtain the second-order

approximation:
Second Order:
2) ] .
d(,'[(,“ [ X i ! .
= ——H e ' | —— H (e dt’ =
dt k ab h 0 l)a( )

1
, . [9.18]
1 ;. ! . ”
' =1-— f T f Hj, (t"e " dt" | dt'.
17 J0 0

while ¢, is unchanged (c,(:')(r) = c[()l A’ (1)). (Notice that Q(,Z)(f) includes the zeroth-

order term; the second-order correction would be the integral part alone.)
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In principle, we could continue this ritual indefinitely, always inserting the
nth-order approximation into the right side of Equation 9.13, and solving for the
(n 4+ Dth order. The zeroth order contains no factors of H’, the first-order cor-
rection contains one factor of H’, the second-order correction has rwo factors
of H’, and so on.! The error in the first-order approximation is evident in the

fact that Icf-,l)(r)l2 + Ic,()”.(r)l2 # 1 (the exact coefficients must, of course, obey

Equation 9.5). However, I(:f-,”(r)l2 + Icl(,”(r)lz is equal to 1 to first order in H'.

which is all we can expect from a first-order approximation. And the same goes
for the higher orders.

* xProblem 9.4 Suppose you don't assume H,, = H,, =0.

(a) Find ¢, () and ¢, (t) in first-order perturbalion theory, for the case ¢,(0) =
1. ¢,(0) = 0. Show that Icﬁ,”(!)l2 + Ic},l)(r)l2 = 1, to first order in H'.

(b) There is a nicer way to handle this problem. Let

d, = eh o B g o o e [9.19]
Show that
d, = —%ei‘f’H(:,,e‘i""”cll,: dy = —%e‘i‘f’H,g{,ei“’“’d(,. [9.20]
where [
b= fo [H! (") — H],(t"]dr'. [9.21]

So the equations for d, and dj, arc identical in structure to Equation 9.13
(with an extra factor ¢'? tacked onto H').

(c) Use the method in part (b) to obtain ¢,(¢) and ¢, (¢) in first-order perturbation
theory, and compare your answer to (a). Comment on any discrepancies.

xProblem 9.5 Solve Equation 9.13 to second order in perturbation theory, for the
general case ¢;(0) = a. ¢,(0) = b.

* *xProblem 9.6 Calculate ¢,(#) and cp(t), to second order, for a time-independent
perturbation (Problem 9.2). Compare your answer with the exact result.

!'Notice that ¢, is modificd in cvery even order. and ¢p, in every odd order: this would not be
true if the perturbation included diagonal terms, or if the system started out in a linear combination of
the two states.
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9.1.3 Sinusoidal Perturbations

Suppose the perturbation has sinusoidal time dependence:

H'(r.t) = V(r)cos(wt). [9.22]

so that
H,;, = Vap cos(wt), [9.23]

where
Var = (%IVWI;)- [9~24]

(As before, I'll assume the diagonal matrix elements vanish, since this is almost
always the case in practice.) To first order (from now on we’ll work exclusively in
first order, and I'll dispense with the superscripts) we have (Equation 9.17):

i

: : :
~ ) 4 IV] s ’ N _ )
cp(t) = Vlmf cos(wt'ye' ™" dtf = ——2< f [e’(""""“’)’ + ¢ (@ “’)’] dr’

0 0

h 2k
V iwn+w)t _ | iay=—w)t _ |

= b€ 4 ¢ , [9.25]
2h wy +w wy —w

That’s the answer, but it’s a little cumbersome to work with. Things simplify
substantially if we restrict our attention to driving frequencies (w) that are very
close to the transition frequency (wy), so that the second term in the square brackets
dominates; specifically, we assume:

wo+ow > |lwy — . [9.26]

This is not much of a limitation, since perturbations at other frequencies have
a negligible probability of causing a transition anyway.> Dropping the first term,

we have
i(wpn—w)t/2
cp(t) = — Voa € 7 : [e"(wu—w),/z — e—i(lu¢1—w)l/2:|
2h wp—w
Vi Sin — .
= —i ;;" ! [(C:)z _Z)T/Z] o (@o—w) /2 [9.27]

The transition probability—the probability that a particle which started out in
the state v, will be found, at time ¢, in the state ¥, —is

|Vip|* sin?[(wo — w)1/2]

h2 (wp — w)?

Pysp(t) = |ep(D))? = [9.28]

2In the following sections we will be applying this theory to the case of light, for which @ ~ 10!?

~1, 50 the denominator in both terms is huge. except (for the second one) in the neighborhood of wy.

S
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_2n _4n _ _ B
|0 — ) @ — | o — 0]

FIGURE 9.1: Transition probability as a function of time, for a sinusoidal perturba-
tion (Equation 9.28).

The most remarkable feature of this result is that, as a function of time, the
transition probability oscillates sinusoidally (Figure 9.1). After rising to a maxi-
mum of IVH;,IZ /hz(w() — w)z—neces'sarily much less than 1. else the assumption
that the perturbation is “small” would be invalid—it drops back down to zero!
At times 1, = 2nmw/|wy — w|, where n = 1.2,3...., the particle is certain to
be back in the lower state. If you want to maximize your chances of provoking
a transition, you should not keep the perturbation on for a long period; you do
better to turn it off after a time m/|wg — w|, and hope to “catch” the system in
the upper state. In Problem 9.7 it is shown that this “flopping™ is not an artifact
of perturbation theory—it occurs also in the exact solution, though the flopping
frequency is modified somewhat.

As 1 noted earlier, the probability of a transition is greatest when the driving
frequency is close to the “‘natural” frequency, wq. This is illustrated in Figure 9.2,
where P,_,, is plotted as a function of w. The peak has a height of (|V,|r/2/)? and
a width 47 /t; evidently it gets higher and narrower as time goes on. (Ostensibly,
the maximum increases without limit. However, the perturbation assumption breaks

P(w)A

_Jf (03] [}

(g —2n/t) (0o + 2n/t)

FIGURE 9.2: Transition probability as a function of driving frequency (Equation 9.28).
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down before it gets close to I, so we can believe the result only for relatively small
t. In Problem 9.7 you will see that the exact result never exceeds 1.)

s xProblem 9.7 The first term in Equation 9.25 comes from the ¢/*'/2 part of cos(wt),
and the second from e"i‘f”/Z. Thus dropping the first term is formally equivalent
to writing H' = (V/2)e™'*', which is to say,

Via Vab
' a —jwt ro_ Tdb et
Hy, = —"e ' Hy, = =€ [9.29]

(The latter is required to make the Hamiltonian matrix hermitian—or, if you pre-
fer, to pick out the dominant term in the formula analogous to Equation 9.25
for ¢,(1).) Rabi noticed that if you make this so-called rotating wave approxi-
mation at the beginning of the calculation, Equation 9.13 can be solved exactly,
with no need for perturbation theory, and no assumption about the strength of
the field.

(a) Solve Equation 9.13 in the rotating wave approximation (Equation 9.29), for
the usual initial conditions: ¢,(0) = 1. ¢;,(0) = 0. Express your results (c,(t)
and ¢, (1)) in terms of the Rabi flopping frequency,

1
0r = 5y (@ = w0 + (Vasl /1) [9.30]
(b) Determine the transition probability, P, ; (), and show that it never exceeds
1. Confirm that |c,(1)]* + |cp()]* = 1.

(c) Check that P,_.,(t) reduces to the perturbation theory result (Equation 9.28)
when the perturbation is “small,” and state precisely what small means in
this context, as a constraint on V.

(d) At what time does the system first return to its initial state?

9.2 EMISSION AND ABSORPTION OF RADIATION

9.2.1 Electromagnetic Waves

An electromagnetic wave (I'll refer to it as “light,” though it could be infrared,
ultraviolet, microwave, X-ray, etc.; these differ only in their frequencies) consists
of transverse (and mutually perpendicular) oscillating electric and magnetic fields
(Figure 9.3). An atom, in the presence of a passing light wave, responds primarily
to the electric component. If the wavelength is long (compared to the size of the
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Electric field

Direction of
propagation

Magnetic field

FIGURE 9.3: An electromagnetic wave.

atom), we can ignore the spatial variation in the field;® the atom, then, is exposed
to a sinusoidally oscillating electric field

E = Egcos(wt) k [9.31]

(for the moment I’ll assume the light is monochromatic, and polarized along the z
direction). The perturbing Hamiltonian is*

H' = —qEpz cos(wt). [9.32]

where ¢ is the charge of the electron.’ Evidently®
H;, = —pEpcos(wt). where p = q(¥plz|¥a). [9.33]
Typically, ¥ is an even or odd function of z; in either case z|¥|* is odd, and

integrates to zero (see Problem 9.1 for some examples). This licenses our usual
assumption that the diagonal matrix elements of H' vanish. Thus the interaction of

3For visible light A ~ 5000A. while the diameter of an atom is around 1 A. so this approximation
is reasonable: but it would not be for X-rays. Problem 9.21 explores the etfect of spatial variation of
the field.

*The encrgy of a charge ¢ in a static field E is —g [ E-dr. You may well object to the use of
an electrostatic formula for a manifestly time-dependent ficld. 1 am implicitly assuming that the period
of oscillation is long compared to the time it takes the charge to move around (within the atom).

S As usual, we assume the nucleus is heavy and stationary: it is the wave lunction of the electron
that concerns us.

The letter p is supposed to remind you of electric dipole moment (for which. in electrodynam-
ics, the letter p is customarily used—in this context it is rendered as a squiggly g to avoid confusion
with momentum). Actually. @ is the off-diagonal matrix element of the : component of the dipole
moment operator. ¢r. Because ol its association with electric dipole moments. radiation governed by
Equation 9.33 is called electric dipole radiation: it is overwhelmingly the dominant kind, at least in
the visible region. See Problem 9.21 for generalizations and terminology.
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light with matter is governed by precisely the kind of oscillatory perturbation we
studied in Section 9.1.3, with

Vba = —p Ep. [9.34]

9.2.2 Absorption, Stimulated Emission, and Spontaneous Emission

If an atom starts out in the “lower” state y,, and you shine a polarized monochro-
matic beam of light on it, the probability of a transition to the “upper” state i, is
given by Equation 9.28, which (in view of Equation 9.34) takes the form

N2 i
IﬁlEo) sin“[(wg w)f/Z]. [0.35]

Pa—»b(t) = ( n

(wp — w)*

In this process, the atom absorbs energy Ej, — E, = fiwg from the electromagnetic
field. We say that it has “absorbed a photon™ (Figure 9.4(a)). (As I mentioned ear-
lier, the word “photon’ really belongs to quantum electrodynamics [the quantum
theory of the electromagnetic field], whereas we are treating the field itself classi-
cally. But this language is convenient, as long as you don’t read more into it than
is really there.)

I could, of course, go back and run the whole derivation for a system that starts
off in the upper state (c,(0) =0, ¢;(0) = 1). Do it for yourself, if you like; it comes
out exactly the same—except that this time we’re calculating Py_,o = |cq(1)|?, the
probability of a transition down to the lower level:

[9.36]

|p|50)2 sin?[(wy — w)1 /2]

Ppy(t) = ( p (@0 — )2

(It has to come out this way——all we’re doing is switching a <> b, which substitutes.
—wg for wyp. When we get to Equation 9.25 we now keep the first term, with
—wp + w in the denominator, and the rest is the same as before.) But when you
stop to think of it, this is an absolutely astonishing result: If the particle is in the
upper state, and you shine light on it, it can make a transition to the lower state,
and in fact the probability of such a transition is exactly the same as for a transition
upward from the lower state. This process, which was first predicted by Einstein,
is called stimulated emission.

b b b
SN
VAV Ve Ve & VaVaVaVa s VaVaVa e =
~/ N\
a a a

(a) Absorption (b) Stimulated emission (c) Spontaneous emission

FIGURE 9.4: Three ways in which light interacts with atoms: (a)absorption,
(b) stimulated emission, (c) spontaneous emission.
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In the case of stimulated emission the electromagnetic field gains energy hwy
from the atom; we say that one photon went in and two photons came out—the
original one that caused the transition plus another one from the transition itself
(Figure 9.4(b)). This raises the possibility of amplification, for if 1 had a bottle
of atoms, all in the upper state, and triggered it with a single incident photon, a
chain reaction would occur, with the first photon producing 2, these 2 producing
4, and so on. We’d have an enormous number of photons coming out, all with the
same frequency and at virtually the same instant. This is, of course, the principle
behind the laser (light amplification by stimulated emission of radiation). Note that
it is essential (for laser action) to get a majority of the atoms into the upper state
(a so-called population inversion), because absorption (which costs one photon)
competes with stimulated emission (which produces one); if you started with an
even mixture of the two states, you'd get no amplification at all.

There is a third mechanism (in addition to absorption and stimulated emission)
by which radiation interacts with matter; it is called spontaneous emission. Here an
atom in the excited state makes a transition downward, with the release of a photon,
but without any applied electromagnetic field to initiate the process (Figure 9.4(c)).
This is the mechanism that accounts for the typical decay of an atomic excited
state. At first sight it is far from clear why spontaneous emission should occur
at all. If the atom is in a stationary state (albeit an excited one), and there is no
external perturbation, it should just sit there forever. And so it would, if it were
really free of all external perturbations. However, in quantum electrodynamics the
fields are nonzero even in the ground state—ijust as the harmonic oscillator (for
example) has nonzero energy (to wit: fiw/2) in its ground state. You can turn out
all the lights, and cool the room down to absolute zero, but there is still some
electromagnetic radiation present, and it is this “zero point” radiation that serves.
to catalyze spontaneous emission. When you come right down to it, there is really
no such thing as truly spontaneous emission; it’s all stimulated emission. The only
distinction to be made is whether the field that does the stimulating is one that you
put there, or one that God put there. In this sense it is exactly the reverse of the
classical radiative process, in which it’s all spontaneous, and there is no such thing
as stimulated emission.

Quantum electrodynamics is beyond the scope of this book,’ but there is a
lovely argument, due to Einstein,® which interrelates the three processes (absorp-
tion, stimulated emission, and spontaneous emission). Einstein did not identify
the mechanism responsible for spontaneous emission (perturbation by the ground-
state electromagnetic field), but his results nevertheless enable us to calculate the

TFor an accessible treatment see Rodney Loudon, The Quantum Theory of Light, 2nd ed. (Claren-
don Press, Oxford. 1983).

8Einstein’s paper was published in 1917, well before the Schrodinger equation. Quantum elec-
trodynamics comes into the argument via the Planck blackbody formula (Equation 5.113), which dates
from 1900.
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spontaneous emission rate, and from that the natural lifetime of an excited atomic
state.” Before we turn to that, however, we need to consider the response of an atom
to non-monochromatic, unpolarized, incoherent electromagnetic waves coming in
from all directions—such as it would encounter, for instance, if it were immersed
in thermal radiation.

9.2.3 Incoherent Perturbations

The energy density in an electromagnetic wave is'”
€
u= 70E(2). [9.37]

where Ej is (as before) the amplitude of the electric field. So the transition prob-
ability (Equation 9.36) is (not surprisingly) proportional to the energy density of
the fields: ,

2u |1~’|2 sin“[(wy — w)r/2]

PI)—MJ(I) = [9%8]

€0 '12 (g — (U)z
But this is for a monochromatic wave. at a single frequency w. In many applica-
tions the system is exposed to electromagnetic waves at a whole range of fre-
quencies; in that case © — p(w)dw, where p(w)dw is the energy density in
the frequency range dw, and the net transition probability takes the form of an
integral:!!

2 % sin?[(wp — w)t/2]
Poosa(t) = Zf 0 (w) ' dow. 9.39
b>a(®) eoﬁzlﬁl 0 Pl (wo — w)? “ -39

y . . . L . . - . . )
YFor an interesting alternative derivation using “seat-of-the-pants™ quantum electrodynamics, see
Problem 9.9.

\OD, Griffiths. Introduction to Electrodynamics. 3rd ed. (Prentice Hall, Upper Saddle River. NJ.
1999). Scction 9.2.3. In general, the energy per unit volume in electromagnetic fields is

b . 2!
u=1(eq/2)E-+ (1 /2110 B~.
For electromagnetic waves, the electric and magnctic contributions are equal, so
] 2 2
M= 60E2 = € £ cos” (wt).

and the average over a full cycle is (eo/Z)E(%. since the average ol cos? (or sinz) is 1/2.

" Equation 9.39 assumes that the perturbations at different frequencies are independent, so that
the total transition probability is a sum of the individual probabilitics. If the different components
are coherent (phasc-correlated). then we should add amplitudes (cp, (1)), not probabilities (Jcp(t )2,
and there will be cross-terms. For the applications we will consider the perturbations are always
incoherent.
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The term in curly brackets is sharply peaked about wg (Figure 9.2), whereas
p(w) is ordinarily quite broad, so we may as well replace p(w) by p(wp), and take
it outside the integral:

2|pl?  sin’[(wp — w)1/2]

Phrosy(t) = W

dw. [9.40]

Changing variables to x = (wy — w)t/2, extending the limits of integration to
x = T oo (since the integrand is essentially zero out there anyway), and looking
up the definite integral

® gin? x .
TR dx =m. 19.41]
we find .
Tlol?
PIJ—H’I(’) = elf;;lz p(wo)t. [942]
o

This time the transition probability is proportional to f. The bizarre “flopping”
phenomenon characteristic of a monochromatic perturbation gets “washed out”
when we hit the system with an incoherent spread of frequencies. In particular, the
transition rate (R = dP/dr) is now a constant:

= Inl2p(wo). [9.43]
egh”
So far, we have assumed that the perturbing wave is coming in along the ¥
direction (Figure 9.3), and polarized in the z direction. But we are interested in
the case of an atom bathed in radiation coming from a// directions, and with all
possible polarizations; the energy in the fields (o (w)) is shared equally among these
different modes. What we need, in place of |z2|?, is the average of |p - 7i|*, where

7= CI<¢IJ|r|¢a) [944]

(generalizing Equation 9.33), and the average is over all polarizations and all inci-
dent directions.

The averaging can be carried out as follows: Choose spherical coordinates
such that the direction of propagation (k) is along x, the polarization (71) is along
z. and the vector 2 defines the spherical angles § and ¢ (Figure 9.5).'2(Actually,

RIJ—m =

211l weat p as though it were real. even though in general it will be complex. Since

|2 -ﬁl2 = [Re(p2) - n +ilm(p) -ﬁ]z = |Re(p) G+ |[Im(p) -ﬁl2
we can do the whole calculation for the real and imaginary parts separately. and simply add the results.

In Equation 9.47 the absolute value sign is doing double duty. signifying both the vector magnitude
and 1o the complex amplitude:

1217 = sl + lpc )l + a1
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\ /
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/

FIGURE 9.5: Axes for the averaging of |p - 1|2,

f is fixed here, and we're averaging over all £ and /i consistent with kLA —which
is to say, over all 8 and ¢. But it's really the coordinate system, not the vector g,
that is changing.) Then

2N =pcosb. [9.45]

and

A 1 2,
|7.7.-n|?;\,C = Zy;flﬂlz cos“0sinBdol de

_pl? (_cos30>
 4rm 3

Conclusion: The transition rate for stimulated emission from state b to state «,
under the influence of incoherent, unpolarized light incident from all directions, is

T

1
2n) = -|pl*. [9.46]
. 3

b4
3egh?

1212 o (). [9.47]

b—aq =

where 2 is the matrix element of the electric dipole moment between the two states
(Equation 9.44), and p(wp) is the energy density in the fields, per unit frequency,
evaluated at wy = (E, — E;)/h.13

13This is a special case of Fermi's Golden Rule for time-dependent perturbation theory. which
says that the transition rate is proportional to the square of the matrix clement of the perturbing potential
and to the strength of the perturbation at the transition frequency.
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9.3 SPONTANEOUS EMISSION

9.3.1 Finstein’s A and B Coefficients

Picture a container of atoms, N, of them in the lower state (¥, ), and N;, of them in
the upper state (1/5). Let A be the spontaneous emission rate,'* so that the number
of particles leaving the upper state by this process, per unit time, is NyA.!> The
transition rate for stimulated emission, as we have seen (Equation 9.47), is propor-
tional to the energy density of the electromagnetic field: By, p(wg); the number of
particles leaving the upper state by this mechanisin, per unit time, is Ny Bp,p(wo).
The absorption rate is likewise proportional to p(wg)—call it B, p(cwp); the num-
ber of particles per unit time joining the upper level is therefore N, By, p(wp). All

told, then,
dNy

dt
Suppose these atoms are in thermal equilibrium with the ambient field, so that

the number of particles in each level is constant. In that case d Ny, /dt = 0, and it
follows that

= —NpA — NjpBpa p(wo) + Ny Bupp(wp). [9.48]

A

. [9.49]
(Na/Nh)Buh - Blm

p(wp) =

On the other hand, we know from elementary statistical mechanics'® that the
number of particles with energy E, in thermal equilibrium at temperature T, is
proportional to the Boltzmann factor, exp(—E/kpT), so

N" ()_Eu/kRT

N = BT =< [9:50]
b e =rir

and hence
A

C’h(u“/k”TBalz — Bypyq .

pwp) = [9.51]

But Planck’s blackbody formula (Equation 5.113) tells us the energy density
of thermal radiation:

_ w’
P@) = 33 FalkaT — 1" [9.52]
Comparing the two expressions, we conclude that
Bub = B [9.53]

"'Nornmlly I'd use R for a transition rate, but out ol deference to der Alte everyone follows
Einstein’s notation in this context.

15 Assume that N, and N}, are very large, so we can treat them as continuous functions of time
and ignore statistical fluctuations.

16See, for example, Charles Kittel and Herbert Kroemer. Thermal Physics. 2nd ed. (Freeman.,
New York. 1980), Chapter 3.
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and
wgh
A = 7—131)['. [9.54]
T=C

Equation 9.53 confirms what we already knew: The transition rate for stimu-
lated emission is the same as for absorption. But it was an astonishing result
in 1917—indeed, Einstein was forced to “invent” stimulated emission in order
to reproduce Planck’s formula. Our present attention, however, focuses on
Equation 9.54, for this tells us the spontaneous emission rate (A)—which is what
we are looking for—in terms of the stimulated emission rate (B, 0 (wg))—which
we already know. From Equation 9.47 we read off

¥4 )
By, = < 9.55
ba 360’72 |ﬂ| [ ]
and it follows that the spontaneous emission rate is

3.2

wylpl”
=" 9.56
3reghic? [.56]

Problem 9.8 As a mechanism for downward transitions, spontaneous emission
competes with thermally stimulated emission (stimulated emission for which black-
body radiation is the source). Show that at room temperature (7 = 300 K) thermal
stimulation dominates for frequencies well below 5x 10!2 Hz, whereas spontaneous
emission dominates for frequencies well above 5 x 10!2 Hz. Which mechanism
dominates for visible light?

Problem 9.9 You could derive the spontaneous emission rate (Equation 9.56) with-
out the detour through Einstein’s A and B coefficients if you knew the ground-state
energy density of the electromagnetic field, pg(w), for then it would simply be a
case of stimulated emission (Equation 9.47). To do this honestly would require
quantum electrodynamics, but if you are prepared to believe that the ground state
consists of one photon in each mode, then the derivation is very simple:

(a) Replace Equation 5.111 by N, = dj, and deduce pp(w). (Presumably this
formula breaks down at high frequency, else the total “vacuum energy” would
be infinite . .. but that’s a story for a different day.)

(b) Use your result, together with Equation 9.47, to obtain the spontaneous emis-
sion rate. Compare Equation 9.56.
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9.3.2 The Lifetime of an Excited State

Equation 9.56 is our fundamental result; it gives the transition rate for spontaneous
emission. Suppose, now, that you have somehow pumped a large number of atoms
into the excited state. As a result of spontaneous emission, this number will decrease
as time goes on; specifically, in a time interval dr you will lose a fraction A dt
of them:

dN, = —AN, dt. [9.57]

(assuming there is no mechanism to replenish the supply).!” Solving for Ny (1),
we find:
Ny (1) = Nyp(0)e ™4 [9.58]

evidently the number remaining in the excited state decreases exponentially, with
a time constant

T=o [9.59]
We call this the lifetime of the state——technically, it is the time it takes for N (r)
to reach 1/e = 0.368 of its initial value.

I have assumed all along that there are only mwo states for the system,
but this was just for notational simplicity—the spontaneous emission formula
(Equation 9.56) gives the transition rate for ¥, — 1, regardless of what other
states may be accessible (see Problem 9.15). Typically, an excited atom has many
different decay modes (that is: i, can decay to a large number of different lower-
energy states, ¥a,, Yay. V¥as. .. ). In that case the transition rates add, and the net

lifetime is |

T A+ Ar+ Ayt

T [9.60]

Example 9.1 Suppose a charge ¢ is attached to a spring and constrained to oscil-
late along the x-axis. Say it starts out in the state |n) (Equation 2.61), and decays
by spontaneous emission to state |n’). From Equation 9.44 we have

2 =qin|x|n')i.

You calculated the matrix elements of x back in Problem 3.33:

[ h
(nlx|n’y = e (‘/’7_’ Snar—1 + \/’7611’.11—1) .

'7This situation is not to be confused with the case of thermal equilibrium. which we considered
in the previous section. We assume here that the atoms have been lifted our of equilibrium, and are in
the process of cascading back down to their equilibrium levels.
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where  is the natural frequency of the oscillator. (I no longer need this letter for
the frequency of the stimulating radiation.) But we’re talking about emission, so n’'
must be lower than n; for our purposes, then,

[ nh R
2 =9 ‘7—6;1'.11—-1 l. [9.61]
ZInw

Evidently transitions occur only to states one step lower on the “ladder,” and the

frequency of the photon emitted is

Ey,—Ey (n+1/Qhw - +1/Dhw
o h

Not surprisingly, the system radiates at the classical oscillator frequency. The tran-

sition rate (Equation 9.56) is

=m—nw=uw. [9.62]

wy =

20
ng-w-
A= T2 [9.63]
67 eqmc
and the lifetime of the nth stationary state is
6megme
h = —=5 "> [964]
ng-=w-*

Meanwhile, each radiated photon carries an energy hw, so the power radiated is
Ahw:

Zwl
p_ 4

"~ 6megme’ (nhw),

or, since the energy of an oscillator in the nth state is E = (n 4 1/2)hw,

g 1
P=———=|E—-;ho). [9.65]
6 egmc- 2
This is the average power radiated by a quantum oscillator with (initial) energy E.

For comparison, let's determine the average power radiated by a classical
oscillator with the same energy. According to classical electrodynamics, the power
radiated by an accelerating charge ¢ is given by the Larmor formula:'8

)
g-a“
P = . [9.66]
6 egc?
For a harmonic oscillator with amplitude xq. x(1) = xg cos(wt), and the acceleration
is @ = —xgw? cos(wr). Averaging over a full cycle, then,
RN
T 2meged

18See, for example. Griffiths (footnote 10). Section 11.2.1.
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But the energy of the oscillator is E = (1/2)mw?x2, so x2 = 2E /mw?, and hence
&) 0 0

2,2
p=_1Y E [9.67]
6regme?

This is the average power radiated by a classical oscillator with energy E. In the
classical limit (® — 0) the classical and quantum formulas agree;!® however,
the quantum formula (Equation 9.65) protects the ground state: If £ = (1/2)hw the
oscillator does not radiate.

Problem 9.10 The half-life (7//2) of an excited state is the time it would take for
half the atoms in a large sample to make a transition. Find the relation between
t172 and 7 (the “lifetime” of the state).

* % xProblem 9.11 Calculate the lifetime (in seconds) for each of the four n = 2
states of hydrogen. Hint: You’ll need to evaluate matrix elements of the form
(Vr100|x|¥ra00)s (V¥100|¥|¥21.), and so on. Remember that x = rsinfcos¢, vy =
rsinfsin¢, and z = r cos 6. Most of these integrals are zero, so scan them before
you start calculating. Answer: 1.60 x 10™° seconds for all except a9, which
is infinite.

9.3.3 Selection Rules

The calculation of spontaneous emission rates has been reduced to a matter of
evaluating matrix elements of the form

<¢b|r|¢u)-

As you will have discovered if you worked Problem 9.11 (if you didn't, go back
right now and do so!), these quantities are very often zero, and it would be helpful
to know in advance when this is going to happen, so we don’t waste a lot of
time evaluating unnecessary integrals. Suppose we are interested in systems like
hydrogen, for which the Hamiltonian is spherically symmetrical. In that case we
may specify the states with the usual quantum numbers #n, /, and m, and the matrix
elements are
(n'l'm’|r|nlm).

P1n fact, if we cxpress P in terms of the encrgy above the ground state, the two formulas are
identical.
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Clever exploitation of the angular momentum commutation relations and the her-
miticity of the angular momentum operators yields a set of powerful constraints on
this quantity.

Selection rules involving /m and m’: Consider first the commutators of L-
with x, v, and z, which we worked out in Chapter 4 (see Equation 4.122):

[L..x]=ihy, [L..yl=-—ihx, [L-,z]=0. [9.68]
From the third of these it follows that

0= (n'l'm'|[L.. z]|nim) = (n'I'm’'|(L.z — zL-)|nlm)

= (n'I'm’|[(m' W)z — z(mh)]|nlm) = (m" — m)h(n'U'm’|z|nlm).

Conclusion:
Either m’ =m, orelse (n'I'm’|z|nlm) = 0. [9.69]

So unless m’ = m, the matrix elements of z are always zero.
Meanwhile, from the commutator of L- with x we get

(n'l'm'|[L-, x]inlm) = (n"U'm"|(L_x — xL.)|nlmn)

= (n' —mh{n'U'm|x\nlm) = ik (@' U'm’|y|nlm).

Conclusion:
(m' —m)(n'U'm’ |x\nlm) = i(n'U'm’|v|nlm). [9.70]

So you never have to compute matrix elements of y—you can always get them
from the corresponding matrix elements of .
Finally, the commutator of L. with vy yields

(n'U'm’|[L-, ¥)lnlm) = (0’ I'm’|(L-y — yL.)|nlm)

= (' —mhn'U'm’|vinlm) = —ih(n'I'm’ |x|nlm).

Conclusion:
(m' —m)W'U'm’|y|nln) = —i(0'U'm’|x|nim). [9.71]

In particular, combining Equations 9.70 and 9.71,
' — m)2 (@' U'm’|x|nlm) = i@m’ — m)@'U'm’|v|nlm) = (n'U'm’|x|nlm).
and hence:

Either in’ —m)> =1, or else (n'l'm’|x|nlm) = (n'U'm’|y|nim) = 0. [9.72]
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From Equations 9.69 and 9.72 we obtain the selection rule for m:

No transitions occur unless Am = +1 or 0. [9.73]

This is an easy result to understand, if you remember that the photon carries spin
1, and hence its value of m is 1, 0, or —1;2¥ conservation of (the z component of)
angular momentum requires that the atom give up whatever the photon takes away.

Selection rules involving / and /’: In Problem 9.12 you are asked to derive
the following commutation relation:

[LZ. (L. r]] — 2h2(rL? + L2r). [9.74]

As before, we sandwich this commutator between (n’'l’m’| and |nlm) to derive the
selection rule:

(n'Um’|[L?. [L?, ¥ nim) = 2R2 (0" I'm'|(xL* + L2r)|nim)
= 28%I0 4+ D) + V" + DY Um [elnim) = @' U'm!|(L*[L?. ¥) = [L?. v]L*)|nlm)
=hI'A + 1) = 1 + DYV’ |[L*. x]|nim)
= R[I'(" + 1) = I( + DYn'Um’|(L*r — rL?)|nim)
=+ 1) = 1+ DU m v |nim). [9.75]
Conclusion:
Either 201 + D+ 1’0’ + D1 ="+ 1) —1d + DH]?
orelse (n'l'm’|r|nim) = 0. [9.76]
But
A+ D =10+ DI="+1+D0" =1
and
00+ D+ + D= +1+ D+ =D = 1.
so the first condition in Equation 9.76 can be written in the form

[ +1+D2=1["=D*=1]=0. [9.77]

20When the polar axis is along the direction ol propagation. the middle value does not occur. and
if you are only interested in the number of linearly independent photon states. the answer is 2. not 3.
However, in this case the photon need not be going in the : direction. and all threc values are possible.
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FIGURE 9.6: Allowed decays for the first four Bohr levels in hydrogen.

The first factor cannot be zero (unless I’ = | = 0—this loophole is closed in
Problem 9.13), so the condition simplifies to /' =/ + 1. Thus we obtain the selec-
tion rule for /:

No transitions occur unless Al = *1. [9.78]

Again, this result (though far from trivial to derive) is easy to interpret: The
photon carries spin 1, so the rules for addition of angular momentum would allow
I'=1+1,I"=1,or !’ =1—1 (for electric dipole radiation the middle possi-
bility—though permitted by conservation of angular momentum—does not occur).

Evidently not all transitions to lower-energy states can proceed by spontaneous
emission; some are forbidden by the selection rules. The scheme of allowed transi-
tions for the first four Bohr levels in hydrogen is shown in Figure 9.6. Note that the
28§ state (Ya0p) is “‘stuck™: It cannot decay, because there is no lower-energy state
with / = 1. It is called a metastable state, and its lifetime is indeed much longer
than that of, for example, the 2P states (Y21, ¥210, and ¥21—1). Metastable states
do eventually decay, by collisions, or by what are (misleadingly) called forbidden
transitions (Problem 9.21), or by multiphoton emission.

*Problem 9.12 Prove the commutation relation in Equation 9.74. Hint: First show

that
[L?, 2] = 2ifi(xLy — yL, — ihz).

Use this, and the fact that r- L =r . (r x p) = 0, to demonstrate that
[L*.[L? 2]] = 2h*(zL* + L%2).

The generalization from z to r is trivial.
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Problem 9.13 Close the “loophole” in Equation 9.78 by showing thatif I’ =1 =0
then (n’l'm’|r|nim) = 0.

x *Problem 9.14 An electron in the n = 3,/ = 0, m = 0 state of hydrogen decays
by a sequence of (electric dipole) transitions to the ground state.

(a) What decay routes are open to it? Specify them in the following way:
p
1300) — |nlm) — |n’'l'm’y — ... — |100).

(b) If you had a bottle full of atoms in this state, what fraction of them would
decay via each route?

(c) What is the lifetime of this state? Hint: Once it’s made the first transition,
it’s no longer in the state |300), so only the first step in each sequence is
relevant in computing the lifetime. When there is more than one decay route
open, the transition rates add.

FURTHER PROBLEMS FOR CHAPTER 9

* xProblem 9.15 Develop time-dependent perturbation theory for a multilevel sys-
tem, starting with the generalization of Equations 9.1 and 9.2:

Ho% = En%, <¢nlwm) = 5nm- [979]

At time 1 = 0 we turn on a perturbation H'(t), so that the total Hamiltonian is
H=Hy+ H'(1). [9.80]

(a) Generalize Equation 9.6 to read

V() =) cn(tue BN, [9.81]
and show that i
bn = — V’; enH) & En—Ent/h [9.82]
where
H,,, = (Y| H' [Yn). [9.83]

(b) If the system starts out in the state ¥x, show that (in first-order perturbation
theory)

. ot
N =1 — = / HY, (1) dr'. [9.84]
h Jo
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and
. ’ . ,
() = —% /0 H (e En=ENIR g’ (i £ N). [9.85]

(c) For example. suppose H' is constant (except that it was turned on at t = 0,
and switched off again at some later time ). Find the probability of transition
from state N to state M (M # N), as a function of 1. Answer:

-2
41 HYy 2 S UEN = En)t/27) [9.86]
(En — En)*

(d) Now suppose H’ is a sinusoidal function of time: H' = V cos(wt). Making
the usual assumptions, show that transitions occur only to states with energy
Ey = Ey T Hw, and the transition probability is

,sin?[(Ey — Ey T how)t/2h]
(Eny — Em T how)?

(e) Suppose a multilevel system is immersed in incoherent electromagnetic radi-

ation. Using Section 9.2.3 as a guide. show that the transition rate for stim-

ulated emission is given by the same formula (Equation 9.47) as for a two-
level system.

Pyom = |Vun| [9.87]

Problem 9.16 For the examples in Problem 9.15(c) and (d), calculate ¢, (t), to
first order. Check the normalization condition:
Do lem®P =1, [9.88]
m

and comment on any discrepancy. Suppose you wanted to calculate the probability
of remaining in the original state ¥y: would you do better to use [cy(r)|?, or

1— Zm;‘:N |Cm(’)|2?

Problem 9.17 A particle starts out (at time 1 = 0) in the Nth state of the infinite
square well. Now the “floor” of the well rises temporarily (maybe water leaks
in, and then drains out again), so that the potential inside is uniform but time
dependent: Vy(r), with V(0) = Vo(T) = 0.

(a) Solve for the exact ¢, (1), using Equation 9.82, and show that the wave
function changes phase, but no transitions occur. Find the phase change,
¢(T), in terms of the function Vp(t).

(b) Analyze the same problem in first-order perturbation theory, and compare
your answers.

Comment: The same result holds whenever the perturbation simply adds a
constant (constant in x, that is, not in ¢) to the potential; it has nothing to do with
the infinite square well, as such. Compare Problem 1.8.
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xProblem 9.18 A particle of mass m is initially in the ground state of the (one-
dimensional) infinite square well. At time ¢ = 0 a “brick” is dropped into the well,
so that the potential becomes

V()-. lf 0 S X S fl/'z,
V() =140, ifa/2 <x <a.
oo, otherwise,
where Vy « E|. After a time T, the brick is removed, and the energy of the

particle is measured. Find the probability (in first-order perturbation theory) that
the result is now E>.

Problem 9.19 We have encountered stimulated emission, (stimulated) absorption,
and spontaneous emission. How come there is no such thing as spontaneous absorp-
tion?

* % xProblem 9.20 Magnetic resonance. A spin-1/2 particle with gyromagnetic ratio

Y, at rest in a static magnetic field 3012, precesses at the Larmor frequency wy =
¥ By (Example 4.3). Now we turn on a small transverse radiofrequency (rf) field,
Bii[cos(wt) T — sin(wt) J], so that the total field is

B = Byrcos(wt) i — Byrsin(wt) J + Bok. [9.89]
(a) Construct the 2 x 2 Hamiltonian matrix (Equation 4.158) for this system.

(b) If x(1) = (ZE:;) is the spin state at time ¢, show that

a= % (Qe“’”b + woa) . b= % (Qe"""”a - wob) X [9.90]

where Q2 = y By is related to the strength of the rf field.

(c) Check that the general solution for a(t) and b(¢), in terms of their initial
values «ap and by, is

a(t) = { ag cos(w't/2) + wi [ap(wp — w) + bR sin(w't /2)} el

b(1) = {bo cos(w’t/2) + ZI)—’ [bo(w — wo) + agf sin(w’r/Z)} e—lwt/2

where

o' = V(w—wy? + Q2. [9.91]



366

Chapter 9 Time-Dependent Perturbation Theory

(d) If the particle starts out with spin up (i.e., ag = 1, bg = 0), find the
probability of a transition to spin down, as a function of time. Answer:
P(1) = {9*/[(w — wo)? + ]} sin* (w1 /2).

(e) Sketch the resonance curve,

QZ
(w — wp)? + Q2

P(w) = [9.92]
as a function of the driving frequency w (for fixed wy and €2). Note that the
maximum oceurs at w = wyq. Find the “full width at half maximum,” Aw.

(f) Since wp = y By, we can use the experimentally observed resonance to deter-
mine the magnetic dipole moment of the particle. In a nuclear magnetic res-
onance (nmr) experiment the g-factor of the proton is to be measured, using
a static field of 10,000 gauss and an rf field of amplitude 0.01 gauss. What
will the resonant frequency be? (See Section 6.5 for the magnetic moment
of the proton.) Find the width of the resonance curve. (Give your answers
in Hz.)

* % xProblem 9.21 In Equation 9.31 I assumed that the atom is so small (in comparison

to the wavelength of light) that spatial variations in the field can be ignored. The
trite electric field would be

E(r.t) = Egcos(k - r — wt). [9.93]

If the atom is centered at the origin, then k-r « 1 over the relevant volume
(k| = 2x/A, so k-r ~ r/L « 1), and that’s why we could afford to drop this
term. Suppose we keep the first-order correction:

E(r,t) = Eg[cos(wt) + (k - r) sin(wt)]. [9.94]

The first term gives rise to the allowed (electric dipole) transitions we considered
in the text; the second leads to so-called forbidden (magnetic dipole and electric
quadrupole) transitions (higher powers of k- r lead to even more ‘“forbidden”
transitions, associated with higher multipole moments).2!

(a) Obtain the spontaneous emission rate for forbidden transitions (don't bother
to average over polarization and propagation directions, though this should
really be done to complete the calculation). Answer:

2.5
R g w
b —_—
T weohcd

Ha (i - ¥)k - 1) |b) . [9.95]

2 For a systematic treatment (including the role of the magnetic field) see David Park, Introduction
to the Quantion Theory, 3rd ed. (McGraw-Hill, New York. 1992), Chapter 11.
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(b) Show that for a one-dimensional oscillator the forbidden transitions go from
level n to level n — 2, and the transition rate (suitably averaged over 71
and k) is

hq2w3n n—=1)

R = [9.96]

15megmc?

(Note: Here w is the frequency of the ploton, not the oscillator.) Find the
ratio of the “forbidden” rate to the *‘allowed™ rate, and comment on the
terminology.

(c) Show that the 2§ — 1S transition in hydrogen is not possible even by a
“forbidden” transition. (As it turns out, this is true for all the higher multipoles
as well; the dominant decay is in fact by two-photon emission, and the lifetime
is about a tenth of a second.??)

* % xProblem 9.22 Show that the spontaneous emission rate (Equation 9.56) for a tran-
sition from n,/ to n’. 1’ in hydrogen is

I+ 1
S =141
2w 12 N+l ! +
AL [9.97]
3meghic? l .
— ifr=1-1.
20— 1
where o
I = / 3 R () Ry () dr- [9.98]
0

(The atom starts out with a specific value of m, and it goes to any of the states m’
consistent with the selection rules: m’ = m+ 1. m. or m — 1. Notice that the answer
is independent of m.) Hint: First calculate all the nonzero matrix elements of x, v,
and z between |nlm) and |n’'l’'m’) for the case I’ = [ + 1. From these, determine
the quantity

W' L+ 1om + Lrlalm) > + (0" 0+ Lomieladm)? + [0 0+ Lom = Lrjndm) |2

Then do the same for /' =1 — 1.

2Sec Masataka Mizushima, Quantum Mechanics of Atomic Spectra and Atomic Structure, Ben-
jamin. New York (1970). Section 5.6.



CHAPTER 10

THE ADIABATIC APPROXIMATION

10.1 THE ADIABATIC THEOREM

10.1.1 Adiabatic Processes

Imagine a perfect pendulum, with no friction or air resistance, oscillating back and
forth in a vertical plane. If you grab the support and shake it in a jerky manner the
bob will swing around chaotically. But if you very gently and steadily move the
support (Figure 10.1), the pendulum will continue to swing in a nice smooth way,
in the same plane (or one parallel to it), with the same amplitude. This gradual
change of the external conditions defines an adiabatic process. Notice that there are
two characteristic times involved: T;, the “internal” time, representing the motion
of the system itself (in this case the period of the pendulum’s oscillations), and T,
the “external” time, over which the parameters of the system change appreciably (if
the pendulum were mounted on a vibrating platform, for example, 7, would be the
period of the platform’s motion). An adiabatic process is one for which T, > T;.!

The basic strategy for analyzing an adiabatic process is first to solve the
problem with the external parameters held constant, and only at the end of the
calculation allow them to vary (slowly) with time. For example, the classical period
of a pendulum of (fixed) length L is 2w/L/g: if the length is now gradually
changing, the period will presumably be 27 /L(t)/g. A more subtle example
occurred in our discussion of the hydrogen molecule ion (Section 7.3). We began

For an interesting discussion of classical adiabatic processes. sce Frank S. Crawford. Am. J.
Phys. 58, 337 (1990).

368
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i)
#)

-

FIGURE 10.1: Adiabatic motion: If the case is

o ) transported very gradually, the pendulum inside keeps

~=2|| swinging with the same amplitude, in a plane parallel
/ to the original one.

by assuming that the nuclei were at rest, a fixed distance R apart, and we solved
for the motion of the electron. Once we had found the ground state energy of
the system as a function of R, we located the equilibrium separation and from
the curvature of the graph we obtained the frequency of vibration of the nuclei
(Problem 7.10). In molecular physics this technique (beginning with nuclei at rest,
calculating electronic wave functions, and using these to obtain information about
the positions and—relatively sluggish——motion of the nuclei) is known as the
Born-Oppenheimer approximation.

In quantum mechanics, the essential content of the adiabatic approximation
can be cast in the form of a theorem. Suppose the Hamiltonian changes gradually
from some initial form H' to some final form H/. The adiabatic theorem states
that if the particle was initially in the nth eigenstate of H', it will be carried
(under the Schrédinger equation) into the nth eigenstate of H f. (1 assume that the
spectrum is discrete and nondegenerate throughout the transition from H' to H I,
so there is no ambiguity about the ordering of the states; these conditions can be
relaxed, given a suitable procedure for “tracking” the eigenfunctions, but I'm not
going to pursue that here.)

For example, suppose we prepare a particle in the ground state of the infinite
square well (Figure 10.2(a)):

¥ (x) = \/gsin (%x) : [10.1]

If we now gradually move the right wall out to 2a, the adiabatic theorem says that
the particle will end up in the ground state of the expanded well (Figure 10.2(b)):

- 1 b4
fooy — [ Z .
vl(x) = - sin (Za'x) . [10.2]



370 Chapter 10 The Adiabatic Approximation

vi(x) v(x) yi(x)

| o !
a 2ax a 2a X a 2a x

(@) (b) (©)

FIGURE 10.2: (a) Particle starts out in the ground state of the infinite square well. (b)
If the wall moves slowly, the particle remains in the ground state. (c) If the wall moves
rapidly, the particle is left (momentarily) in its initial state.

(apart, perhaps, from a phase factor). Notice that we’re not talking about a small
change in the Hamiltonian (as in perturbation theory)-—this one is huge. All we
require is that it happen slowly. Energy is not conserved here: Whoever is moving
the wall is extracting energy from the system, just like the piston on a slowly
expanding cylinder of gas. By contrast, if the well expands suddenly, the resulting
state is still ¥’ (x) (Figure 10.2(c)), which is a complicated linear combination of
eigenstates of the new Hamiltonian (Problem 2.38). In this case energy is conserved
(at least, its expectation value 1s): as in the free expansion of a gas (into a vacuum)
when the barrier is suddenly removed, no work is done.

* % *Problem 10.1 The case of an infinite square well whose right wall expands at a
constant velocity (v) can be solved exactly.> A complete set of solutions is

D) = 2 sin (15 elmne =26z 0.3
w w /
where w(t) = a + vt i1s the (instantaneous) width of the well and E,’; =

n*n2h%/2ma? is the nth allowed energy of the original well (width a). The general
solution is a linear combination of the ®’s:

o0}
W(x 1) =Y cp®ulx. 1) [10.4]
n=l|
the coefficients ¢, are independent of 1.

(a) Check that Equation 10.3 satisfies the time-dependent Schrédinger equation,
with the appropriate boundary conditions.

1S. W. Doescher and M. H. Ricc. Am. J. Phys. 37, 1246 (1969).
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(b) Suppose a particle starts out (t = 0) in the ground state of the initial well:

V(x.0) = \/gsin (J(T—lx) .

Show that the expansion coefficients can be written in the form

2 [T .
¢ = -f e "% sin(nz) sin(z) dz. [10.5]
T Jo

where & = mva/2m?h is a dimensionless measure of the speed with which
the well expands. (Unfortunately, this integral cannot be evaluated in terms
of elementary functions.)

(c) Suppose we allow the well to expand to twice its original width, so the
“external” time is given by w(7,) = 2a. The “internal” time is the period of
the time-dependent exponential factor in the (initial) ground state. Determine
T. and T;, and show that the adiabatic regime corresponds to o « 1, so that
exp(—iaz?) = 1 over the domain of integration. Use this to determine the
expansion coefficients, ¢,. Construct W(x. t), and confirmm that it is consistent
with the adiabatic theorem.

(d) Show that the phase factor in W (x. t) can be written in the form
1 !
o(t) = —-ﬁ—f E|(thdt'. [10.6]
0

2 242 2 . . .
where E,(t) = n“n*h~/2mw~* is the instantaneous eigenvalue, at time t.
Comiment on this result.

10.1.2 Proof of the Adiabatic Theorem

The adiabatic theorem is simple to state, and it sounds plausible, but it is not easy
to prove.® If the Hamiltonian is independent of time, then a particle which starts
out in the nth eigenstate,4 (/%

H¢rl = En Kb‘n' [107]

*The theorem is usually attributed to Ehrenfest, who studied adiabatic processes in early versions
of the quantum theory. The first proof in modern quantum mechanics was given by Born and Fock,
Zeit, f. Physik 51. 165 (1928). Other proofs will be found in Messiah, Quantnun Mechanics, Wiley. New
York (1962). Vol. 1. Chapter XVII. Section 12, J-T Hwang and Philip Pechukas. J. Chem. Phys. 67.
4640. 1977. and Gasiorowicz, Quantum Physics. Wiley. New York (1974). Chapter 22. Problem 6. The
argument given here follows B. H. Bransden and C. J. Joachain. Introduction to Quantum Mechanics.
nd cd., Addison-Wesley. Boston. MA (2000). Scction 9.4.

H1°11 suppress the dependence on position (or spin. etc.): in this argument only the time depen-
dence is at issue.
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remains in the nth eigenstate, simply picking up a phase factor:
W, (1) = ¢iwe_iE"l/h- [10.8]

If the Hamiltonian changes with time, then the eigenfunctions and eigenvalues are
themselves time-dependent:

H) (1) = Ey(0),(1). [10.9]
but they still constitute (at any particular instant) an orthonormal set

(1”;10)'1”111(1)) = bum. [10.1_0]

and they are complete, so the general solution to the time-dependent Schrédinger
equation

ih%\ll(t) = H()W(1) [10.11]

can be expressed as a linear combination of them:

V() =) ea)Pu(n)e ), [10.12]

where [ g
O, (1) E—-—f E,(t"dt [10.13]

h Jo

generalizes the ‘‘standard™ phase factor to the case where E, varies with time.
(As usual, I could have included it in the coefficient ¢, (), but it is convenient to
factor out this portion of the time dependence, since it would be present even for
a time-independent Hamiltonian.)

Substituting Equation 10.12 into Equation 10.11 we obtain

ih Z [én Yn + ¢ V"n +icy lbnén] el = Z Cn (H¢’l)ef9n [10.14]
n

n

(I use a dot to denote the time derivative). In view of Equations 10.9 and 10.13
the last two terms cancel, leaving

Z Cn ¢’lei9,, = - Z Gy \Z/,,eiy". [10.15]
n n

Taking the inner product with ¢,,, and invoking the orthonormality of the instan-
taneous eigenfunctions (Equation 10.10),

o —
D énBune™™ = =" ¢ (Y [Yn)e™®
n n
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or

() =— Z Cn ('lbmwfn)@iw” =) [10.16]
n

Now, differentiating Equation 10.9 with respect to time yields
Hwn + Hlbn = Enwn + Enlb‘n‘

and hence (again taking the inner product with ;)

(Y | H W) + (W | H [Un) = EnSpn + En{¥im V). [10.17]

Exploiting the hermiticity of H to write (W, |H W) = Ep (Y |¥n), it follows that
forn#m .
(¢;;1|H|¢;1) = (EM - Elll)(¢lrl|¢ll)- [1018]

Putting this into Equation 10.16 (and assuming, remember, that the energies are
nondegenerate) we conclude that

. H « y N ’ 4 ’
é‘m (t) = —Cm<‘¢"”|‘¢‘m) — Z Cﬂwe(—'/h)_m[ﬁ‘u(l V—E,(1)]di i [10.19]
nem n = &m

This result is exact. Now comes the adiabatic approximation: Assume that H
is extremely small, and drop the second term,’ leaving

Cn (1) = —Cim (Y |¢m)~ [10.20]

with the solution .
em (1) = Cp (0)e' "1, [10.21]

!
V(1) = if <¢m (t,)
0

In particular, if the particle starts out in the nth eigenstate (which is to say, if
¢p(0) = 1, and ¢,;(0) = 0 for m # n), then (Equation 10.12)

where®

%K”m (f,)> dr’ [10.22]

W, (1) = Wiy (1), [10.23]

so it remains in the nth eigenstate (of the evolving Hamiltonian), picking up only
a couple of phase factors. QED

SRigorous justification of this step is not trivial. Sec A. C. Aguiar Pinto er al.. Am. J. Phys. 68.
955 (2000).

] 6Notice that y is real. since the normalization of vy, entails (d/d0) (Y |¥m) = (Ym V) +
(W l¥rm) = 2Re ({¢rmi | }) = 0.
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Example 10.1 Imagine an electron (charge —e, mass m) at rest at the origin,
in the presence of a magnetic field whose magnitude (By) is constant, but whose
direction sweeps out a cone, of opening angle «, at constant angular velocity w
(Figure 10.3):

B(t) = Bylsina cos(wt)i + sina sin(wt) J + cos ak]. [10.24]

The Hamiltonian (Equation 4.158) is

hB
H(t) = iB -S= 627 10 [sin & cos(wt)o, + sina sin(wt)oy, + cos ao-]
m n )
hw cosa e ging
T2 (ei“” sine@ —cosa ) [10.25]
where B
w =220, [10.26]

n

The normalized eigenspinors of H(t) are

X+(t)=( cos(a/2) ) [10.27]

e’ sin(a/2)
and

— cos(er/2)

X—(t) = ("_'w' sin(a/ 2)>; [10.28]

they represent spin up and spin down, respectively, along the instantaneous direc-
tion of B(t) (see Problem 4.30). The corresponding eigenvalues are

hw

Z A

Y FIGURE 10.3: Magnetic field sweeps around in a
cone, at angular velocity w (Equation 10.24).
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Suppose the electron starts out with spin up, along B(0):’

__ [cos(a/2)
x(0) = ( sin(a /2)> : [10.30]

The exact solution to the time-dependent Schrédinger equation is (Problem 10.2):

[COS(M/Z) — ,L@_)T_w) sin(kt/Z)] COS(a/Z)e_i‘”’/z
x(1) = . [1031]
[COS(M/Z) — i(ﬂlT'*‘_@l sin(kt/Z)] Sin(O(/Z)e'H“”/Z

where

A= \/wz + cu% — 2ww) cos . [10.32]

Or, expressing it as a linear combination of x4 and x_:

X)) = [cos (%) —i @ — (:COS i sin (%)] ey ()

At .
+i [% sin o sin (?)] e T2y (1), [10.33]

Evidently the (exact) probability of a transition to spin down (along the current
direction of B) is

2
(x (D] x= (D) = l:% sin¢ sin (£>j| . [10.34]

2
The adiabatic theorem says that this transition probability should vanish in the limit
T, > T;, where T, is the characteristic time for changes in the Hamiltonian (in this
case, 1/w) and T; is the characteristic time for changes in the wave function (in this
case, /(E4+ — E_) = 1/w)). Thus the adiabatic approximation means o <« w;:
The field rotates slowly, in comparison with the phase of the (unperturbed) wave
functions. In the adiabatic regime A = w,, and therefore

AN

U (D) x— ()2 = [ﬂ sina sin (—->] -0, [10.35]
w1 2

as advertised. The magnetic field leads the electron around by its nose, with the

spin always pointing in the direction of B. By contrast, if w > w; then A = w, and

the system bounces back and forth between spin up and spin down (Figure 10.4).

"This is essentially the same as Problem 9.20. except that now the electron starts out with spin
up along B, whereas in Equation 9.20(d) it started out with spin up along z.
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FIGURE 10.4: Plot of the transition probability, Equation 10.34, in the nonadiabatic
regime (@ > w1).

* xProblem 10.2 Check that Equation 10.31 satisfies the time-dependent Schrédinger
equation for the Hamiltonian in Equation 10.25. Also confirm Equation 10.33, and
show that the sum of the squares of the coefficients is 1, as required for normalization.

10.2 BERRY’S PHASE

10.2.1 Nonholonomic Processes

Let’s go back to the classical model I used (in Section 10.1.1) to develop the notion
of an adiabatic process: a perfectly frictionless pendulum, whose support is carried
around from place to place. I claimed that as long as the motion of the support is
very slow, compared to the period of the pendulum (so that the pendulum executes
many oscillations before the support has moved appreciably), it will continue to
swing in the same plane (or one parallel to it), with the same amplitude (and, of
course, the same frequency).

But what if I took this ideal pendulum up to the North Pole, and set it swing-
ing—say, in the direction of Portland (Figure 10.5). For the moment, pretend the
earth is not rotating. Very gently (that is, adiabatically), 1 carry it down the lon-
gitude line passing through Portland, to the equator. At this point it is swinging
north-south. Now 1 carry it (still swinging north-south) part way around the equa-
tor. And finally, I take it back up to the North Pole, along the new longitude line.
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Pendulum

<~"’

Equator

FIGURE 10.5: Itinerary for adiabatic transport of
a pendulum on the surface of the earth.

It is clear that the pendulum will no longer be swinging in the same plane as it
was when I set out—indeed, the new plane makes an angle ® with the old one,
where @ is the angle between the southbound and the northbound longitude lines.

As it happens, © is equal to the solid angle (2) subtended (at the center of the
earth) by the path around which I carried the pendulum. For this path surrounds a
fraction ® /27 of the northern hemisphere, so its areais A = (1/2)(® /2x)4n R? =
®R? (where R is the radius of the earth), and hence

®=A/R*=Q. [10.36]

This is a particularly nice way to express the answer, because it turns out to be
independent of the shape of the path (Figure 10.6).3

Incidentally, the Foucault pendulum is an example of precisely this sort of
adiabatic transport around a closed loop on a sphere—only this time instead of me

FIGURE 10.6: Arbitrary path on the surface of a
sphere, subtending a solid angle .

®You can prove this for yourself. if you are interested. Think of the circuit as being made up of
tiny segments of great circles (geodesics on the sphere): the pendulum makes a fixed angle with each
geodesic segment, so the net angular deviation is related to the sum of the vertex angles of the spherical
polygon.
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ZA

FIGURE 10.7: Path of a Foucault pendulum, in
the course of one day.

carrying the pendulum around, I let the rotation of the earth do the job. The solid
angle subtended by a latitude line 6y (Figure 10.7) is

Q= fsin@ dfd¢ = 2m(— cos 0)|g“’ = 21 (1l — cosbp). [10.37]

Relative to the earth (which has meanwhile turned through an angle of 27), the
daily precession of the Foucault pendulum is 277 cos §p—a result that is ordinarily
obtained by appeal to Coriolis forces in the rotating reference frame,® but is seen
in this context to admit a purely geometrical interpretation.

A system such as this, which does not return to its original state when trans-
ported around a closed loop, is said to be nonholonomic. (The “transport” in
question need not involve physical motion: What we have in mind is that the
parameters of the system are changed in some fashion that eventually returns them
to their initial values.) Nonholonomic systems are ubiquitous—in a sense, every
cyclical engine is a nonholonomic device: At the end of each cycle the car has
moved forward a bit, or a weight has been lifted slightly, or something. The idea
has even been applied to the locomotion of microbes in fluids at low Reynolds
number.'® My project for the next section is to study the quantum mechanics of
nonholonomic adiabatic processes. The essential question is this: How does the
final state differ from the initial state, if the parameters in the Hamiltonian are
carried adiabatically around some closed cycle?

9See. for example, Jerry B. Marion and Stephen T. Thornton, Classical Dynamics of Particles
and Systems, 4th ed.. Saunders. Fort Worth, TX (1995). Example 10.5. Geographers measure latitude
(A) up from the cquator, rather than down from the pole, so cosfy = sinA.

0The pendulum example is an application of Hannay’s angle, which is the classical analog to
Berry's phase. For a collection of papers on both subjects. see Alfred Shapere and Frank Wilczek. eds.,
Geometric Phases in Physics. World Scientific. Singapore (1989).
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10.2.2 Geometric Phase

In Section 10.1.2 I showed that a particle which starts out in the nth eigen-
state of H(0) remains, under adiabatic conditions, in the nth eigenstate of H (1),
picking up only a time-dependent phase factor. Specifically, its wave function is
(Equation 10.23)

by (1) = O Oy, (1), [10.38]

where

1 !
9"(1) = _—f E”(t,)_ [lt, [10.39]
h Jo

is the dynamic phase (generalizing the usual factor exp(—iE,t/h) to the case
where E,, i1s a function of time), and

yll(t)EIf <¢n(f)

is the so-called geometric phase.

Now 1/, (¢) depends on t because there is some parameter R(t) in the Hamil-
tonian that is changing with time. (In Problem 10.1, R(t) would be the width of
the expanding square well.) Thus

P _ 00 dR
ot OR dt

yn(t)=zf <wn‘8¢">d,d fR <%’a¢,,> dR, [10.42]

where R; and Ry are the initial and final values of R(r). In particular, if the
Hamiltonian returns to its original form after time T, so that Ry = R;, then
¥n(T) = 0—nothing very interesting there!

However, I assumed (in Equation 10.41) that there is only one parameter in
the Hamiltonian that is changing. Suppose there are N of them: R (t), Ra(t). ...,
Ry (1); in that case

— Ut )> dt’ [10.40]

[10.41]

SO

3¢i't 3% de albn dR> dllfn dRN dR
— = o 1043
57 _ oR, dr | 3R, dr T SRy dr VRV [1043]
where R = (R, R,. ... . Ry). and Vy, is the gradient with respect to these param-

eters. This time we have

Ry
() = i f (W |VRUn) - dR, [10.44]

R;
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and if the Hamiltonian returns to its original form after a time T, the net geometric
phase change is

y(T) = i f (VulVR¥n) - dR. [1045]

This is a line integral around a closed loop in parameter-space, and it is not, in
general, zero. Equation 10.45 was first obtained by Michael Berry, in 1984,!! and
vu(T) is called Berry’s phase. Notice that y, (T) depends only on the path taken,
not on how fast that path is traversed (provided, of course, that it is slow enough
to validate the adiabatic hypothesis). By contrast, the accumulated dynamic phase,

1 T ,
GII(T) = _—f E”(t,_) dt .
h Jo

depends critically on the elapsed time.

We are accustomed to thinking that the phase of the wave function is arbi-
trary—physical quantities involve |¥|?, and the phase factor cancels out. For this
reason, most people assumed until recently that the geometric phase was of no
conceivable physical significance—after all, the phase of 1, (t) itself is arbitrary.
It was Berry’s insight that if you carry the Hamiltonian around a closed loop,
bringing it back to its original form, the relative phase at the beginning and the
end of the process is not arbitrary, and can actually be measured.

For example, suppose we take a beam of particles (all in the state W), and
split it in two, so that one beamn passes through an adiabatically changing potential,
while the other does not. When the two beams are recombined, the total wave
function has the form

1 1

V= -y 4+ —-Wpe

10.46
2 2 [1046]

where W is the “direct” beam wave function, and I" is the extra phase (in part
dynamic, and in part geometric) acquired by the beam subjected to the varying H.
In this case

v = %I‘llolz (1+67) (1+7T)

1 _
= 5|\11(,-|2(1 + cos ') = |Wp|? cos?(I'/2). [10.47]

So by looking for points of constructive and destructive interference (where I is
an even or odd multiple of , respectively), one can easily measure I'. (Berry, and

m. v, Berry. Proc. R. Soc. Lond. A 392. 45 (1984). reprinted in Wilczek and Shapere (foot-
note 10). It is astonishing. in retrospect. that this result escaped notice for sixty years.
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FIGURE 10.8: Magnetic flux through a
surface S bounded by the closed curve C.

other early writers, worried that the geometric phase might be swamped by a larger
dynamic phase, but it has proved possible to arrange things so as to separate out
the two contributions.)

When the parameter space is three dimensional, R = (Rj, Rz, R3), Berry’s
formula (Equation 10.45) is reminiscent of the expression for magnetic flux in
terms of the vector potential A. The flux, @, through a surface S bounded by a
curve C (Figure 10.8), is

® = f B.da. [10.48]
S

If we write the magnetic field in terms of the vector potential (B = V x A), and
apply Stokes’ theorem:

<I>=f(VxA)-da=§£A~dr. [10.49]
A C

Thus Berry’s phase can be thought of as the “flux™ of a “magnetic field”
“B” = iVR X (Yn|Vrn), [10.50]

through the (closed loop) trajectory in parameter-space. To put it the other way
around, in the three-dimensional case Berry’s phase can be written as a surface
integral,

yu(T) = i f (Vi % (Yl VY] - da. [10.51]

The magnetic analogy can be carried much further, but for our purposes
Equation 10.51 is merely a convenient alternative expression for y, (T).

xProblem 10.3

(a) Use Equation 10.42 to calculate the geometric phase change when the infinite
square well expands adiabatically from width w; to width w>. Comment on
this result.
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(b) If the expansion occurs at a constant rate (dw/dt = v), what is the dynamic
phase change for this process?

(c) If the well now contracts back to its original size, what is Berry’s phase for
the cycle?

Problem 10.4 The delta function well (Equation 2.114) supports a single bound
state (Equation 2.129). Calculate the geometric phase change when « gradually
increases from ) to «>. If the increase occurs at a constant rate (da/dt = c), what
is the dynamic phase change for this process?

Problem 10.5 Show that if ,(r) is real, the geometric phase vanishes.
(Problems 10.3 and 10.4 are examples of this.) You might try to beat the rap by
tacking an unnecessary (but perfectly legal) phase factor onto the eigenfunctions:
V(1) = e'P1,, (1), where ¢, (R) is an arbitrary (real) function. Try it. You'll get a
nonzero geometric phase, all right, but note what happens when you put it back into
Equation 10.23. And for a closed loop it gives zero. Moral: For nonzero Berry’s
phase, you need (i) more than one time-dependent parameter in the Hamiltonian,
and (ii) a Hamiltonian that yields nontrivially complex eigenfunctions.

Example 10.2 The classic example of Berry's phase is an electron at the ori-
gin, subjected to a magnetic field of constant magnitude but changing direction.
Consider first the special case (analyzed in Example 10.1) in which B(r) precesses
around at a constant angular velocity w, making a fixed angle o with the z axis.
The exact solution (for an electron that starts out with “spin up™ along B) is given
by Equation 10.33. In the adiabatic regime, w < w;,

2
" 2
A= wl\/l — 2(— cosa + (£> = w) (l — 2cosoz) =w] —wcosc, [10.52]
w| w] w]
and Equation 10.33 becomes

X (1) ~ e-—iwn/lei(a)cos a)x/le—ia)1/2X+(I)

I‘ .
+i [ﬁ sina sin (“’T‘ﬂ et 2y (). [10.53]

w]

As w/w) — 0 the second term drops out completely, and the result matches the
expected adiabatic form (Equation 10.23). The dynamic phase is

1 t
9+(f) = ——f E_*.(f,)df, = —‘w_l' [1054]
1y 2
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(where E4 = hw; /2, from Equation 10.29), so the geometric phase is

wt
y+_(f) = (coso — 1)—5- [1055]

For a complete cycle T = 2 /w, and therefore Berry’s phase is
V+(T) = m(cosa — 1). [10.56]

Now consider the more general case, in which the tip of the magnetic field
vector sweeps out an arbitrary closed curve on the surface of a sphere of radius
r = By (Figure 10.9). The eigenstate representing spin up along B(r) has the form

(see Problem 4.30):
_ cos(6/2) ([10.57]
X+ = \ei?sing/2) ) '

where 6 and ¢ (the spherical coordinates of B) are now both functions of time.
Looking up the gradient in spherical coordinates, we find

0X+ ., 10X+ 2 ) T
Vy, = —2f4--L1§
X+ = T %0 O fsine Be

- PANS N a
=’l( (1/“)“"(9/2))0+ ! ( 0 >¢, [10.58]

(1/2)€'¢ cos(6/2) rsing \ief®sin(6/2)
Hence
. 2
(X+IVx4) = 51’_ |:— sin(8/2) cos(8/2) 6 + sin(8/2) cos(8/2) 6 + 2,'% q‘{l
. 2
= ,-w q‘5 [10.56]

rsinf

FIGURE 10.9: Magnetic field of constant magni-
tude but changing direction sweeps out a closed
loop.
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For Equation 10.51 we need the curl of this quantity:

¢« e 2 .
V x (x| Vxg) = —— 2 [sine (M)jl :2_:3;-. [10.60]

rsiné @ rsinf

=~

According to Equation 10.51, then,

1 1.
y_,_(T) = —Ef )'—2 r-da. [10.61]

The integral is over the area on the sphere swept out by B in the course of the
cycle, so da = r2dQ#, and we conclude that

1 1
y+(T)=—§fdQ=—§Q. [10.62]

where Q is the solid angle subtended at the origin. This is a delightfully simple
result, and tantalizingly reminiscent of the classical problem with which we began
the discussion (transport of a frictionless pendulum around a closed path on the
surface of the earth). It says that if you take a magnet, and lead the electron’s spin
around adiabatically in an arbitrary closed path, the net (geometric) phase change
will be minus one-half the solid angle swept out by the magnetic field vector.
In view of Equation 10.37, this general result is consistent with the special case
(Equation 10.56), as of course it had to be.

* % *Problem 10.6 Work out the analog to Equation 10.62 for a particle of spin I.

Answer: —Q. (Incidentally, for spin s the result is —s€2.)

10.2.3 The Aharonov-Bohm Effect

In classical electrodynamics the potentials (¢ and A)!? are not directly measur-
able—the physical quantities are the electric and magnetic fields:

oA
E=—ch—¥, B=VxA. [10.63]

121t is customary in quantum mechanics to use the letter V for potential energy, but in electro-
dynamics the same letter is ordinarily reserved for the scalar potential. To avoid confusion I use ¢ for
the scalar potential. See Problems 4.59. 4.60, and 4.61 for background to this section.
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The fundamental laws (Maxwell’s equations and the Lorentz force rule) make no
reference to potentials, which are (from a logical point of view) no more thar
convenient but dispensable theoretical constructs. Indeed, you can with impun:ts
change the potentials:

A
<p—><p’=<p——37. A—> A =A+VA. [10.64]

where A is any function of position and time; this is called a gauge transformation,
and it has no effect on the fields (as you can easily check using Equation 10.63).

In quantum mechanics the potentials play a more significant role, for the
Hamiltonian is expressed in terms of ¢ and A, not E and B:

I (h 2
H (lV~qA> +qo. [10.65]

Nevertheless, the theory is still invariant under gauge transformations (see
Problem 4.61), and for a long time it was taken for granted that there could be
no electromagnetic influences in regions where E and B are zero—any more than
there can be in the classical theory. But in 1959 Aharonov and Bohm!3 showed that
the vector potential can affect the quantum behavior of a charged particle, even
when it is moving through a region in which the field itself is zero. I'll work out a
simple example first, then discuss the Aharonov-Bohm effect, and finally indicate
how it all relates to Beirry's phase.

Imagine a particle constrained to move in a circle of radius b (a bead on a
wire ring, if you like). Along the axis runs a solenoid of radius a < b, carrying
a steady electric current / (see Figure 10.10). If the solenoid is extremely long,
the magnetic field inside it is uniform, and the field outside is zero. But the vector
potential outside the solenoid is not zero; in fact (adopting the convenient gauge
condition V- A = 0),4

A= 3—&. (r > a), [10.66)
2r

where ® = ma®B is the magnetic flux through the solenoid. Meanwhile, the
solenoid itself is uncharged, so the scalar potential ¢ is zero. In this case the
Hamiltonian (Equation 10.65) becomes

I ,
H=5- [~h2V‘ +q2A% + 2ihgA - v} . [10.67]
Lln

13y, Aharonov and D. Bohm. Phys. Rev. 115. 485 ‘(1959). For a significant precursor. see
W. Ehrenberg and R. E. Siday. Proc. Phys. Suc. London B62. 8 (1949).

I4See. for instance. D. J. Griffiths. Introduction to Electrodvnamics, 3rd ed.. Prentice Hall. Upper
Saddle River. NJ (1999). Equation 5.71.
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FIGURE 10.10: Charged bead on a circular ring through which a long solenoid
passes.

But the wave function depends only on the azimuthal angle ¢ (6 = 7/2 and r = b),
so V — (¢/b)(d/d¢), and the Schrodinger equation reads

1 [ A% a2 (qcb )2 hg® d
wh? d¢

3 | g (amp) —}w<¢>=Ew<¢). [10.68]

This is a linear differential equation with constant coefficients:

d*y dy
—2if—— =0. 10.69
G " 2BGs TV [10.69]
where ,
) 2mb2E
=27 ad =22 _p2 [10.70]
mh h-
Solutions are of the form _
U = Aei*?, [10.71]
with .
A=B*t /B2 +e =ﬁi-}%\/_ 2mE. [10.72]

Continuity of 'gb(cp), at ¢ = 2m, requires that A be an integer:

gt ?Jz;;;E =n. [10.73]
1
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and it follows that

E i ( hid )2 =0 *1.+2...) [10.74]
= n——— ' n==uv, 1rl, Lz, ...). .
" amb? 2 h '

The solenoid lifts the two-fold degeneracy of the bead-on-a-ring (Problem 2.46):
Positive 7, representing a particle traveling in the same direction as the current in
the solenoid, has a somewhat lower energy (assuming ¢ is positive) than negative n,
describing a particle traveling in the opposite direction. More important, the allowed
energies clearly depend on the field inside the solenoid, even though the field at the
location of the particle is zero!"”

More generally, suppose a particle is moving through a region where B is
zero (so V x A = 0), but A itself is nor. (I'll assume that A is static, although
the method can be generalized to time-dependent potentials.) The (time-dependent)
Schrodinger equation,

1 (h 2 G
— (Tv — qA) +V|W=ih—. [10.75]
2m \i _ ot

with potential energy V —which may or may not include an electrical contribution
gy —can be simplified by writing

U =ty [10.76]

where .
g(r) = 1 f A’y -dr'. [10.77]

hJo

and @ is some (arbitrarily chosen) reference point. Note that this definition makes
sense only when V x A = 0 throughout the region in question—otherwise the line
integral would depend on the path taken from @ to r, and hence would not define
a function of r. In terms of W', the gradient of ¥ is

VW = e/ (iVg)W' + ¢'# (V')

but Vg = (¢/h)A, so
h B
(lv - qA) W= ety [10.78]
I {

131 is a peculiar property of superconducting rings that the enclosed flux is quantized: ® =
(2h/q)n’. where n’ is an integer. In that case the effeet is undetectable, since E; = (B2 12mby(n+n')>.
and (n +n') is just unother integer. (Incidentally. the charge ¢ here turns out to be nvice the charge of
an electron; the superconducting clectrons arc locked together in pairs.) However. flux quantization is
enforced by the superconductor (which induces circulating currents to make up the difference), not by
the solenoid or the electromagnetic field, and it does not occur in the (nonsuperconducting) example
considered here.
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and it follows that ,

h 2 .
(Tv - qA) W = —h2ef VY. [10.79]
I

Putting this into Equation 10.75, and cancelling the common factor ¢4, we are left
with )
h* oy’
VAW 4 VY = ih [10.80]
2m at

Evidently W’ satisfies the Schrodinger equation withour A. If we can solve
Equation 10.80, correcting for the presence of a (curl-free) vector potential will
be trivial: Just tack on the phase factor e'¢.

Aharonov and Bohm proposed an experiment in which a beam of electrons
is split in two, and passed either side of a long solenoid, before being recombined
(Figure 10.11). The beams are kept well away from the solenoid itself, so they
encounter only regions where B = 0. But A, which is given by Equation 10.66, is
not zero, and (assuming V is the same on both sides), the two beams arrive with
different phases:

P 1. n ¢
g=2fA-dr=g— (_¢).(,-¢d¢):ifl—. [10.81]
mh r 2h

The plus sign applies to the electrons traveling in the same direction as A—which
is to say, in the same direction as the current in the solenoid. The beams arrive out

B

AL A A A A A A A A A 4
K

}

Beam
recombined

AAAAA A A AT

Solenoid

FIGURE 10.11: The Aharonov-Bohm effect: The electron beam splits, with half
passing ecither side of a long solenoid.
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_—(r-R)

—

FIGURE 10.12: Particle confined to a box, by a potential V(r — R).

of phase by an amount proportional to the magnetic flux their paths encircle:
®
phase difference = q? [10.82]

This phase shift leads to measurable interference (Equation 10.47), which has been
confirmed experimentally by Chambers and others.!®

As Berry pointed out in his first paper on the subject, the Aharonov-Bohm
effect can be regarded as an example of geometric phase. Suppose the charged
particle is confined to a box (which is centered at point R outside the solenoid) by
a potential V(r — R)—see Figure 10.12. (In a moment we’re going to transport
the box around the solenoid, so R will become a function of time, but for now it is
just some fixed vector.) The eigenfunctions of the Hamiltonian are determined by

I
2m

h 2
I:I_.V - qA(r):I + V(@ —R) ¥y = Eyiy. [10.83]
We have already learned how to solve equations of this form: Let

Yy = eiglb,,,- [10.84]

where!’

g [F
g = —f A(r') - dr’. [10.85]
h Jr

I6R. G. Chambers. Phys. Rev. Ler. 5. 3 (1960).

71t is convenient to set the reference point @ at the center of the box, for this guarantecs that we
recover the original phase convention when we complete the journey around the solenoid. If you use a
point in fixed space, for example. you'll have to readjust the phase “by hand.” at the far end. because
the path will have wrapped around the solenoid, circling regions where the curl of A does not vanish.
This leads to exactly the same answer. but it’s a crude way to do it. In general. when choosing the phase
convention for the eigenfunctions in Equation 10.9. you want to make sure that ¥, (x. T) = ¥y (x, 0).
so that no spurious phase chunges are introduced.
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and ' satisfies the same eigenvalue equation, only with A — 0:
hz 2 t /
—2—’;V- +Va@-R) | ¢, =E,. [10.86]

Notice that 1, is a function only of the displacement (r — R), not (like ¥,,) of r
and R separately.

Now let’s carry the box around the solenoid (in this application the process
doesn’t even have to be adiabatic). To determine Berry’s phase we must first
evaluate the quantity (y,,|Vgy,,). Noting that

Vv = V& [y (0 = B = —i TARYE Y, (r — R) + 4 Va, (r ~ R).

we find

(1”11 IVR %)

= f e[yl (r — R)]*e® [—i%A(R)w,’, (r —R) + Vey, (r — R)] d’r
=—i %A(R) - f [/ (r — R)]*V, (r — R) d°r. [10.87]

The V with no subscript denotes the gradient with respect to r, and I used the
fact that Vg = —V, when acting on a function of (r — R). But the last integral is
i /h times the expectation value of momentum, in an eigenstate of the Hamiltonian
—(h%/2m)V? + V, which we know from Section 2.1 is zero. So

(Y [V RY) = —i%A(R). [10.88]

Putting this into Berry's formula (Equation 10.45), we conclude that

vn(T) = ‘ifA(R) .dr=1 f(v «A)-da=22 [10.89]
n h h

which neatly confirms the Aharonov-Bohm result (Equation 10.82), and reveals
that the Aharonov-Bohm effect is a particular instance of geometric phase.18
What are we to make of the Aharonov-Bohm effect? Evidently our classi-
cal preconceptions are simply mistaken: There can be electromagnetic effects in
regions where the fields are zero. Note however that this does not make A itself

lSIncidcnlully. in this case the analogy between Berry's phase and magnetic flux (Equation 10.50)
is almost an identity: “B” = (¢ /h)B.
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measurable—only the enclosed flux comes into the final answer, and the theory
remains gauge invariant.

Problem 10.7

(a) Derive Equation 10.67 from Equation 10.65.
(b) Derive Equation 10.79, starting with Equation 10.78.

FURTHER PROBLEMS FOR CHAPTER 10

* % xProblem 10.8 A particle starts out in the ground state of the infinite square well
(on the interval 0 < x < a). Now a wall is slowly erected, slightly off-center:!”

Vix) = f(1)8 (\ - 52’- . e) .

where f(r) rises gradually from 0 to co. According to the adiabatic theorem, the
particle will remain in the ground state of the evolving Hamiltonian.

(a) Find (and sketch) the ground state at t — oo. Hint: This should be the ground
state of the infinite square well with an impenetrable barrier at a/2 4 €. Note
that the particle is confined to the (slightly) larger left “‘half™ of the well.

(b) Find the (transcendental) equation for the ground state of the Hamiltonian at
time t. Answer:

zsinz = T[cos z — cos(zd)].

where z = ka, T = maf(t)/h%, 8§ = 2¢/a, and k = v/2mE /.

(c) Setting § = 0, solve graphically for z, and show that the smallest z goes from
7 to 2r as T goes from O to co. Explain this result.

(d) Now set § = 0.01 and solve numerically for z, using T = 0, 1, 5, 20, 100,
and 1000.

(e) Find the probability P, that the particle is in the right “half” of the well,
as a function of : and é. Answer: P, = 1/[1 + (I+/1-)], where I+ =
[1£6—(1/2)sin(z(1 T 8)] sin’[z(1 F 8)/2]. Evaluate this expression
numerically for the T's in part (d). Comment on your results.

19 julio Gea-Banacloche. Am. J. Phys. 70. 307 (2002) uses a rectangular barrier: the delta-function
version was suggested by M. Lakner and J. Peternelj, Am. J. Phys. 71. 519 (2003),
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(f) Plot the ground state wave function for those same values of T and §. Note
how it gets squeezed into the left half of the well, as the barrier grows.?

* % *Problem 10.9 Suppose the one-dimensional harmonic oscillator (mass m, fre-
quency w) is subjected to a driving force of the form F (1) = mw?” f (1), where f(r)
is some specified function (I have factored out mw? for notational convenience;
f(t) has the dimensions of length). The Hamiltonian is

A9 1,
Ht)=——— 4+ —nw

2 2 .
X*—mw xf(t). .90
a2 T3 v —mw xf(t) [10.90]

Assume that the force was first turned on at time t = 0: f(t) = 0 for t < 0.
This system can be solved exactly, both in classical mechanics and in quantum
mechanics.?!

(a) Determine the classical position of the oscillator, assuming it started from
rest at the origin (x.(0) = x.(0) = 0). Answer:

Mm=w/anmmpqﬂmh [10.91]
0

(b) Show that the solution to the (time-dependent) Schrodinger equation for this
oscillator, assuming it started out in the nth state of the undriven oscillator
(W (x.0) = ¥, (x) where ¥, (x) is given by Equation 2.61), can be written
as

.
—(;x—f-%)hwl—f-nli}(.\'—Lj#)+'—"—”3"—" _/‘; _/'(t')x(-(‘t')dt’]

Yx.t) =v,(x — xc_-)e’i’[ [10.92]

(c) Show that the eigenfunctions and eigenvalues of H(t) are
]- l 2 2 ;
Yo, ) =yYux — f): Ey@t) = (77 + ‘i‘) fiw — :2'"“0_]‘-- [10.93]

(d) Show that in the adiabatic approximation the classical position (Equa-
tion 10.91) reduces to x.(r) = f(r). State the precise criterion for adia-
baticity, in this context, as a constraint on the time derivative of f. Hint:
Write sin[w(t — )] as (1/w)(d/dt’) cos[w(t — t')] and use integration
by parts.

20Gea-Banacloche (footnote 19) discusses the evolution of the wave function without assuming
the adiabatic theorem, and confirms these results in the adiabatic limit.

gee Y. Nogami, Am. J. Phys. §9. 64 (1991), and references therein.
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Confirm the adiabatic theorem for this example, by using the results in (c)
and (d) to show that

W(x. 1) =y (x, 1)elh el [10.94]

Check that the dynamic phase has the correct form (Equation 10.39). Is the
geometric phase what you would expect?

Problem 10.10 The adiabatic approximation can be regarded as the first term in an
adiabatic series for the coefficients ¢, (t) in Equation 10.12. Suppose the system
starts out in the nth state; in the adiabatic approximation, it remains in the nth
state, picking up only a time-dependent geometric phase factor (Equation 10.21):

(a)

cm(t) = 6:;1;;ei}/"(,)-

Substitute this into the right side of Equation 10.16 to obtain the “first cor-
rection” to adiabaticity:

! 0 e ) ,
cm (1) = e (0) — Eb'm(f,) —¥n (") V) Eul)=60 () gy [10.95]
0 ot’

This enables us to calculate transition probabilities in the nearly adiabatic
regime. To develop the “second correction,” we would insert Equation 10.95
on the right side of Equation 10.16, and so on.

As an example, apply Equation 10.95 to the driven oscillator (Problem 10.9).
Show that (in the near-adiabatic approximation) transitions are possible only
to the two immediately adjacent levels, for which

1
Cpt1(1) = —‘/nz?—;)«/n + 1/(; fhe' ' dt',

. 1 . ,
Cn—1(1) = m—wﬁf fahe @ dr'.
Varn V7

(The transition probabilities are the absolute squares of these, of course.)




CHAPTER 11

SCATTERING

11.1 INTRODUCTION

11.1.1 Classical Scattering Theory

Imagine a particle incident on some scattering center (say, a proton fired at a heavy
nucleus). It comes in with energy E and impact parameter b. and it emerges at
some scattering angle 6 —see Figure 11.1. (I'll assume for simplicity that the tar-
get is azimuthally symmetrical, so the trajectory remains in one plane, and that
the target is very heavy, so the recoil is negligible.) The essential problem of
classical scattering theory is this: Given the impact parameter, calculate the scat-
tering angle. Ordinarily, of course, the smaller the impact parameter, the greater
the scattering angle.

Scattering center z

FIGURE 11.1: The classical scattering problem, showing the impact parameter b and
the scattering angle 6.

394
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FIGURE 11.2: Elastic hard-sphere scattering.

Example 11.1 Hard-sphere scattering. Suppose the target is a billiard ball,
of radius R, and the incident particle is a BB, which bounces off elastically
(Figure 11.2). In terms of the angle «, the impact parameter is b = Rsin«, and
the scattering angle is 6 = m — 2, so

T 6 )
—Rsinl==2)= ~1. 11.1
b Rsm(2 2) Rcos(2> [11.1]
Evidently
—1 «
0 — 2cos™ (b/R). ffb_<_R, (11.2]
0. if b > R.

More generally, particles incident within an infinitesimal patch of cross-
sectional area do will scatter into a corresponding infinitesimal solid angle d$2
(Figure 11.3). The larger do is, the bigger d2 will be; the proportionality factor,
D(0) = do /d<, is called the differential (scattering) cross-section:!

I'This is terrible language: D isn't a differential. and it isn't a cross-section. To my ear, the
words “differential cross-section” would attach more naturally to do. But I'm alraid we're stuck with
this terminology. 1 should also warn you that the notation D(#) is nonstandard: Most people just call it
do /dQ—which makes Equation 11.3 look like a tautology. 1 think it will be less confusing if we give
the differential cross-section its own symbol.
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do

LS ]

" ¢
by ‘ I A

FIGURE 11.3: Particles incident in the area do scatter into the solid angle d€2.

do = D(0)dS. [11.3]

In terms of the impact parameter and the azimuthal angle ¢, do = bdbd¢ and

dQ =sinfdfdg, so

b
DO = —
© sin @

db

- [11.4]

(Since 6 is typically a decreasing function of b, the derivative is actually nega-
tive—hence the absolute value sign.)

Example 11.2 Hard-sphere scattering (continued). In the case of hard-sphere
scattering (Example 11.1)

db 1 6
— = ——Rsin| = ). il.
10 2Rsm(2> [11.5]
SO

D) =

Rcos(6/2) (Rsin(6/2)\ _ R*
sin 6 ( 2 )‘ 4° 1.6l

This example is unusual, in that the differential cross-section is independent of 6.

The total cross-section is the inregral of D(6), over all solid angles:

oEfD(G)dQ; [11.7]
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roughly speaking, it is the total area of incident beam that is scattered by the target.
For example, in the case of hard-sphere scattering,

o = (R*/4) f dQ = nR?, [11.8]

which is just what we would expect: It’s the cross-sectional area of the sphere;
BB’s incident within this area will hit the target, and those farther out will miss it
completely. But the virtue of the formalism developed here is that it applies just as
well to “soft” targets (such as the Coulomb field of a nucleus) that are not simply
“hit-or-miss.”

Finally, suppose we have a beam of incident particles, with uniform intensity
(or luminosity, as particle physicists call it)

L = number of incident particles per unit area. per unit time. [11.9]

The number of particles entering area do (and hence scattering into solid angle
dQQ), per unit time, is dN = Ldo = L D(8) d2, so

D) = LdN [11.10]

T LdQ’ '

This is often taken as the definition of the differential cross-section, because it
makes reference only to quantities easily measured in the laboratory: If the detector
accepts particles scattering into a solid angle d€2, we simply count the number
recorded, per unit time, divide by d€2, and normalize to the luminosity of the
incident beam.

* % *Problem 11.1 Rutherford scattering. An incident particle of charge ¢; and kinetic
energy E scatters off a heavy stationary particle of charge ¢».

(a) Derive the formula relating the impact parameter to the scattering angle.?
Answer: b = (q1q2/8megE) cot(6/2).

(b) Determine the differential scattering cross-section. Answer:

2
q142 -
D@) = ) 11.11

©) |:]67160Esin2(0/2)] [ ]

(c) Show that the total cross-section for Rutherford scattering is infinite. We say
that the 1/r potential has “infinite range™; you can’t escape from a Coulomb
force.

2This isn't easy, and you might want to refer to a book on classical mechanics, such as Jerry
B. Marion and Stephen T. Thornton. Classical Dynamics of Particles and Systems. 4th ed., Saunders,
Fort Worth, TX (1995). Section 9.10.
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e ikz

FIGURE 11.4: Scattering of waves; incoming plane wave generates outgoing spheri-
cal wave.

11.1.2 Quantum Scattering Theory

In the quantum theory of scattering, we imagine an incident plane wave, ¥ (z) =
Ae'kc_ traveling in the z direction, which encounters a scattering potential, produc-
ing an outgoing spherical wave (Figure 11.4).3 That is, we look for solutions to
the Schrodinger equation of the general form

ikr
Y(r.0) = A {e”": + f(@)e—r—} . for large r. [11.12]

(The spherical wave carries a factor of 1/r, because this portion of || must go
like 1/r2 to conserve probability.) The wave number k is related to the energy of
the incident particles in the usual way:

V2mE

k
h

Il

[11.13]

As before. I shall assume the target is azimuthally symmetrical; in the more general
case the amplitude f of the outgoing spherical wave could depend on ¢ as well
as 6.

3For the moment. there's not much quantum mechanics in this: what we're really talking about
is the scattering of waves. as opposed to classical particles. and you could even think of Figure 11.4
as a picture of water waves encountering a rock. or (better, since we're interested in three-dimensional
scattering) sound waves bouncing off a basketball. In that case we'd write the wave function in the reaf
form
A [costkz) + f(8) costkr + 8)/r].

and f(8) would represent the amplitude of the scattered sound wave in the direction 6.
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do

FIGURE 11.5: The volume dV of incident beam that passes through area do in
time dt.

The whole problem is to determine the scattering amplitude f(6); it tells
you the probability of scattering in a given direction 8, and hence is related to the
differential cross-section. Indeed, the probability that the incident particle, traveling
at speed v, passes through the infinitesimal area do, in time dt, is (see Figure 11.5)

dP = |Yincident|* dV = |A]*(vdt) do.

But this is equal to the probability that the particle scatters into the corresponding
solid angle dQ2:

AP

2

dP = |¢scallered|2dV= (vdf)rde-

from which it follows that do = | f|*> dS2, and hence

_ do _ 2
D) = 10 = | f()]". [11.14]

Evidently the differential cross-section (which is the quantity of interest to the
experimentalist) is equal to the absolute square of the scattering amplitude (which
is obtained by solving the Schrodinger equation). In the following sections we
will study two techniques for calculating the scattering amplitude: partial wave
analysis and the Born approximation.

Problem 11.2 Construct the analogs to Equation 11.12 for one-dimensional and
two-dimensional scattering.

11.2 PARTIAL WAVE ANALYSIS

11.2.1 Formalism

As we found in Chapter 4, the Schrédinger equation for a spherically symmetrical
potential V (r) admits the separable solutions

V(r.0.¢) = R(r)Y/"(6.9). [11.15]
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where ¥;" is a spherical harmonic (Equation 4.32), and u(r) = r R(r) satisfies the
radial equation (Equation 4.37):
h* d’u R 1+ 1)

+|VQFE)+ — 5 = FEu. [11.16]
2m  r*

2m dr?

Al very large r the potential goes to zero, and the centrifugal contribution is neg-
ligible, so

du ,

— = —k“u.

dr?
The general solution is

u(r) = Ce'*" + D=k,
the first term represents an outgoing spherical wave, and the second an incoming
one—for the scattered wave we evidently want D = 0. At very large r, then,

Akr

R(r) ~

as we already deduced (on physical grounds) in the previous section
(Equation 11.12).

That’s for very large r (more precisely, for kr > 1: in optics it would be
called the radiation zone). As in one-dimensional scattering theory, we assume
that the potential is “localized,” in the sense that exterior to some finite scattering
region it is essentially zero (Figure 11.6). In the intermediate region (where V can
be ignored but the centrifugal term cannot),* the radial equation becomes

d*u  1(+1
w_WAD ey [11.17]

arz 12

/" Intermediate region
V=0

Radiation zone

(kr ) 1)

Scattering
region

FIGURE 11.6: Scattering from a localized potential: the scattering region (darker
shading), the intermediate region (lighter shading), and the radiation zone (where
kr » 1).

4What follows does not apply to the Coulomb potential. since 1/r goes to zero more slowly

than 1/;'2. as r — oo. and the centrifugal term does nor dominate in this region. In this sense the
Coulomb potential is not localized. and partial wave analysis is inapplicable.
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TABLE 11.1: Spherical Hankel functions, h;l)(x) and b;z) (x).

n .el¥ () et
hg =—i5 hy =i~ 5
M i 1\ .. (2) 1)
h =(‘7‘T)@"‘ h (—z—.r) "
M 3i 3, i 2 3 3,0\ _
N RESEAY (B3 Lo
2 _,:3 _‘.2 LY 2 % 2 X
h;”_)_%-_(_f)lﬂeix
@1 _ (forx>1
hl- - - (f)l+le—r.\'

and the general solution (Equation 4.45) is a linear combination of spherical Bessel
functions:

u(r) = Arjitkr) + Brng(kr). [11.18]

However, neither j; (which is somewhat like a sine function) nor n; (which is a
sort of generalized cosine function) represents an outgoing (or an incoming) wave.

What we need are the linear combinations analogous to ¢/*" and ¢~ A" these are
known as spherical Hankel functions:
(l) — (2) — iy ; .
(xX) = ji(x) +im(x); b7 (x) = ji(x) —ing(x). [11.19]

The first few spherical Hankel functions are listed in Table 11.1. At larg e; h,l)(kl)

(the “‘Hankel function of the first kind”) goes like elkr /r, whereas h, (k;) (the
‘“Hankel function of the second kind”) goes like e~ ikr /r; for outgoing waves, then,
we need spherical Hankel functions of the first kind:

R(r) ~ h" (kr). [11.20]

Thus the exact wave function, outside the scattering region (where V(r) =
0), is

Y(r0.¢)=AK+ > Cruh hr) Y60, 0) . [11.21]

l.m

The first term is the incident plane wave, and the sum (with expansion coefficients
C;.m;) represents the scattered wave. But since we are assuming the potential is
spherically symmetric, the wave function cannot depend on ¢.° So only terms with

3There's nothing wrong with 6 dependence, of course, because the incoming plane wave defines
a z direction, breaking the spherical symmetry. But the azimuthal symmetry remains; the incident plane
wave has no ¢ dependence. and there is nothing in the scattering process that could introduce any ¢
dependence in the outgoing wave.
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m = 0 survive (remember, ¥ ~ ¢"%). Now (from Equations 4.27 and 4.32)
!

Y2(6. ¢) = ,/g—lgr—lﬂ(cosé?). [11.22]

where P, is the /th Legendre polynomial. It is customary to redefine the expansion
coefficients, letting C; o = i kAT QT+ D ap:

x5
Y(r.0)=A [eik: +k > iR+ Dag b k) P,(coso)} : [11.23]
=0

You'll see in a moment why this peculiar notation is convenient; ¢; is called the
Ith partial wave amplitude.

Now, for very large r the Hankel function goes like (—i)'*!ef*" /kr (Table
11.1), so

. Jkr
Y(r.6) = A {e"'-'- + f(é?)‘ } [11.24]

r
where

£O)=> "2+ 1)a Pi(cosh). [11.25]
1=0

This confirms more rigorously the general structure postulated in Equation 11.12,
and tells us how to compute the scattering amplitude, f(6), in terms of the partial
wave amplitudes (a;). The differential cross-section is

D@) = |fO)* =YY (2 + 1)@+ 1)a} ay P(cos0) Py(cos6). [11.26]
U

and the total cross-section is

xC
o =4r Z(21+ 1) |12 [11.27]
1=0

(I used the orthogonality of the Legendre polynomials, Equation 4.34, to do the
angular integration.)

11.2.2 Strategy

All that remains is to determine the partial wave amplitudes, a;, for the potential in
question. This is accomplished by solving the Schrodinger equation in the interior
region (where V (r) is distinctly non-zero), and matching this to the exterior solution
(Equation 11.23), using the appropriate boundary conditions. The only problem is
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that as it stands my notation is hybrid: I used spherical coordinates for the scattered
wave, but cartesian coordinates for the incident wave. We need to rewrite the wave
function in a more consistent notation.

Of course, ¢/*% satisfies the Schrodinger equation with V = 0. On the other
hand, I just argued that the genmeral solution to the Schrédinger equation with
V =0 can be written in the form

> [ Arm g Gkr) + Brw m (k)] Y6, ¢).

I.m
In particular, then, it must be possible to express e in this way. But ¢/*< is finite
at the origin, so no Neumann functions are allowed (n;(kr) blows up at r = 0),
and since z = r cos @ has no ¢ dependence, only m = 0 terms occur. The explicit
expansion of a plane wave in terms of spherical waves is known as Rayleigh’s

formula:®

oo
% =il (2 + 1) j (kr) P (cos 6). [11.28]
=0

Using this, the wave function in the exterior region can be expressed entirely in
terms of r and 6:

w g
pro =AY i+ [j, kr) + ik ay h}”(kr)] Py (cos 6). [11.29]
1=0

Example 11.3 Quantum hard-sphere scattering. Suppose

- <
V() = oo, forr <a, [11.30]
0, forr>a.

The boundary condition, then, is
Y(a,0) =0. [11.31]

SO
o0
Sil@r+n [j,(.ka) tika h,‘”(ka)] P (cos6) =0 [11.32]
1=0
for all 8, from which it follows (Problem 11.3) that
Ji(ka)

kh; (ka)

For a guide to the proof, see George Arfken and Hans-Jurgen Weber, Mathematical Methods
for Physicists, 5th ed., Academic Press, Orlando (2000). Exercises 12.4.7 and 12.4.8.
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In particular, the total cross-section is

Z(ZI +1)

That’s the exact answer, but it’s not terribly illuminating, so let’s consider the
limiting case of low-energy scattering: ka < 1. (Since k = 2z /A, this amounts to
saying that the wavelength is much greater than the radius of the sphere.) Referring
to Table 4.4, we note that »;(z) is much larger than j;(z), for small z, so

itka)

[11.34]
h(l)(ka)

@ Ji(@) o i Ji(2)

(l)() J1@) +in(2) ni(z)
_oAndyry 2’1!]2,z/+1 [11.35]
T ZenT T2 T avent] ¢ '

and hence

e S 1 207 s
e k l+~.
2 ;21—1—1 [(21)!] (ka)

But we’re assuming ka <« 1, so the higher powers are negligible—in the low
energy approximation the scattering is dominated by the | = O term. (This means
that the differential cross-section is independent of 6, just as it was in the classical
case.) Evidently

o = 4wa’, [11.36]

for low energy hard-sphere scattering. Surprisingly, the scattering cross-section is
four times the geometrical cross-section—in fact, o is the total surface area of the
sphere. This “larger effective size” is characteristic of long-wavelength scattering
(it would be true in optics, as well); in a sense, these waves “feel” their way around
the whole sphere, whereas classical particles only see the head-on cross-section.

Problem 11.3 Prove Equation 11.33, starting with Equation 11.32. Hint: Exploit
the orthogonality of the Legendre polynomials to show that the coefficients with
different values of / must separately vanish.

s *Problem 11.4 Consider the case of low-energy scattering from a spherical delta-

function shell:
V(i) =ad(r —a),

where « and a are constants. Calculate the scattering amplitude, f(8), the differ-
ential cross-section, D(8), and the total cross-section, o. Assume ka < 1, so that
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only the / = 0 term contributes significantly. (To simplify matters, throw out all
[ # 0 terms right from the start.) The main problem, of course, is to determine
ao. Express your answer in terms of the dimensionless quantity g = 2maa/h?.
Answer: o = 4ma?p?/(1 + B)>. |

11.3 PHASE SHIFTS

Consider first the problem of one-dimensional scattering from a localized potential
V(x) on the half-line x < 0 (Figure 11.7). I'll put a “brick wall” at x =0, so a
wave incident from the left,

Yi(x) = Ae* (x < —a) [11.37]

is entirely reflected
¥, (x) = Be ™ (x < —a). [11.38]

Whatever happens in the interaction region (—a < x < 0), the amplitude of the
reflected wave has got to be the same as that of the incident wave, by conservation
of probability. But it need not have the same phase. If there were no potential at
all (just the wall at x = 0), then B = —A, since the total wave function (incident
plus reflected) must vanish at the origin:

Yo(x) = A (e — ™) (Vi) =0). [11.39]
If the potential is not zero, the wave function (for x < —a) takes the form

Y(x)= A (eik“' —e m“‘-“’) (V(x) # 0). [11.40]

<« Be-ikx

, Aeikx

S L

FIGURE 11.7: One-dimensional scattering from a localized potential bounded on the
right by an infinite wall.
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The whole theory of scattering reduces to the problem of calculating the phase
shift’ & (as a function of k, and hence of the energy E = Ai’k?/2m), for a spec-
ified potential. We do this, of course, by solving the Schrédinger equation in the
scattering region (—a < x < 0), and imposing appropriate boundary conditions
(see Problem 11.5). The virtue of working with the phase shift (as opposed to the
complex amplitude B) is that it illuminates the physics (because of conservation
of probability, all the potential can do is shift the phase of the reflected wave) and
simplifies the mathematics (trading a complex quantity—two real numbers—for a
single real quantity).

Now let’s return to the three-dimensional case. The incident plane wave
(Aet*<) carries no angular momentum in the z direction (Rayleigh’s formula con-
tains no terms with m # 0), but it includes all values of the rotal angular momen-
tum ({ =0, 1, 2, ...). Because angular momentum is conserved (by a spherically
symmetric potential), each partial wave (labelled by a particular /) scatters inde-
pendently, with (again) no change in amplitude® —only in phase. If there is no
potential at all, then ¥y = Ae'*%, and the /th partial wave is (Equation 11.28)

v = Ai' 1 + 1) ji(kr) Pi(cosB)  (V(r) =0). [11.41]

But (from Equation 11.19 and Table 11.1)
1

1 . )
i) — — | (D 2oy | N+ ix eIl —ix
Jix) = 5 [h (x)+ hy (,,\,)] 5 [( i)y et +i e ] (x> 1). [11.42]

So for large r

2I+1)
2ikr
The second term in square brackets represents an incoming spherical wave; it is

unchanged when we introduce the scattering potential. The first term is the outgoing
wave; it picks up a phase shift §;:

2]
A( .+ 1)
2ikr

y ~ A [e"k" — (—l)’e‘ik"] Pi(cos6) (V(r) =0). [11.43]

TAURN [e""‘"““'" — (=1 e-”“'] Pi(cosf) (V(r) #0). [11.44]
Think of it as a converging spherical wave (due exclusively to the /1,(2') component
in ¢'%), which is phase shifted 2§; (see footnote 7) and emerges as an outgoing
spherical wave (the h,(” part of ¢'** as well as the scattered wave itself).

"The 2 in front of & is conventional. We think of the incident wave as being phase shifted once
on the way in, and again on the way out; by § we mean the “one way™ phase shift, and the toral is
therefore 24.

80ne reason this subject can be so confusing is that practically everything is called an “ampli-
tude:™ f(#) is the “scattering amplitude.” ¢ is the “partial wave amplitude.” but the first is a function
of 8. and both are complex numbers. I'm now talking about “amplitude™ in the original sense: the (real,
of course) height of a sinusoidal wave.
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In Section 11.2.1 the whole theory was expressed in terms of the partial wave
amplitudes @;; now we have formulated it in terms of the phase shifts §;. There
must be a connection between the two. Indeed, comparing the asymptotic (large )
form of Equation 11.23

204 D)1 s 21 4+1
v~ A (—+—) [e”"’ — (—l)’e""’] + (—+—)a1 e* L Pi(cos®) [11.45]
2ikr r
with the generic expression in terms of & (Equation 11.44), we find?
_ ] 2i8; _ ! 18 o:
a == (e 1) = Lo sin(3). [11.46]

It follows in particular (Equation 11.25) that

o0
f@) = lZ(zl + 1)e'¥ sin(8;) Py(cos ) [11.47]
k 1=0

and (Equation 11.27)

4 &
o= 7(-;- 3 (@2 + 1) sin@). [11.48]
=0

Again, the advantage of working with phase shifts (as opposed to partial wave
amplitudes) is that they are easier to interpret physically, and simpler mathemat-
ically—the phase shift formalisin exploits conservation of angular momentum to
reduce a complex quantity a; (two real numbers) to a single real one §;.

Problem 11.5 A particle of mass m and energy E is incident from the left on the
potential
0, (x < —a).
Vix)=3—-WV. (—a<x<0).
00, (x > 0).

(a) If the incoming wave is Ae'** (where k = v/2mE /h), find the reflected wave.
Answer:

. — ik’ cot(k’
Ae—2rl\a [k ik" cot(k a)] e—’l\-‘ ., where k' = 2m(E + Vo) /h.

k + ik’ cot(k’a)

9Allhough I used the asymptotic form of the wave function to draw the connection between
a; and §;. there is nothing approximate about the result (Equation 11.46). Both of them are constants
(independent of r). and & means the phase shift in the asymptotic region (where the Hankel functions

have settled down to e 7 /kp).
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(b) Confirm that the reflected wave has the same amplitude as the incident wave.

(c) Find the phase shift § (Equation 11.40) for a very deep well (E <« V).
Answer: § = —ka.

Problem 11.6 What are the partial wave phase shifts (;) for hard-sphere scattering
(Example 11.3)?

Problem 11.7 Find the S-wave (I = 0) partial wave phase shift 8y (k) for scattering
from a delta-function shell (Problem 11.4). Assume that the radial wave function
u(r) goes to 0 as r — oo. Answer:

ka 2maa
—cot™! | cot(ka) + —————] where 8 =
[ (ke B sin’(ka) B h?
11.4 THE BORN APPROXIMATION
11.4.1 Integral Form of the Schrodinger Equation
The time-independent Schrédinger equation,
h s
——VYy + VY = EVY, [11.49]
2m
can be written more succinctly as
(V2 +kHy = 0. [11.50]
where
v2mE 2
k= 2;” " and Q= %vw. [11.51]
1 1°

This has the superficial form of the Helmholtz equation; note, however, that the
“inhomogeneous™ term (Q) itself depends on .

Suppose we could find a function G(r) that solves the Helmholtz equation
with a delta function “source:™

(V2 + )G @) = 8 (r). [11.52]

Then we could express ¥ as an integral:

V() = f G (r — r0) Qo) d*ro. [11.53]
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For it is easy to show that this satisfies Schrédinger’s equation, in the form of
Equation 11.50:

(V2 + Dy (@r) = f [(V2+k2)G(r—ro)] Q(rp) d*rp

=f63(r—ro)Q(ro) d*ro = Q(r).

G(r) is called the Green’s function for the Helmholtz equation. (In general, the
Green'’s function for a linear differential equation represents the “response’™ to a
delta-function source.)

Our first task'? is to solve Equation 11.52 for G(r). This is most easily accom-
plished by taking the Fourier transform, which turns the differential equation into
an algebraic equation. Let

1 :
G(r) = (2—7[)3/—2 f e's'rg(s) d3S. [l 154]
Then
(V2 + 60 = f (7 + k7] g9 dPs.
But N ‘
V2eiST = 26157, [11.55]
and (see Equation 2.144)
1 :
83(1') = W f e'S'r dBS, [1156]

so Equation 11.52 says

1

i | .
W /‘(—s2 + kz)ers.rg(s) d3s = (_271'_)? f elST d3s.

It follows!! that ,

)32 (k2 — 52)

Putting this back into Equation 11.54, we find:

— 1 is-r I 3 -
G = 53 fe i [11

g(s) = [11.57}

OWarning: You are approaching two pages of heavy analysis, including contour integ
you wish, skip straight to the answer, Equation 11.65.

HThis is clearly sufficient, but it is also necessary. as you can show by combining the &
into a single integral, and using Plancherel’s theorem. Equation 2.102.
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FIGURE 11.8: Convenient coordinates for the
integral in Equation 11.58.

Now, r is fixed, as far as the s integration is concerned, so we may as well choose
spherical coordinates (s, 8, ¢) with the polar axis along r (Figure 11.8). Thens-r =
srcos@, the ¢ integral is trivial (277), and the € integral is

T isrcosd |7 2 §j
f reshsingdg =~ | = 23000 [11.59]
0 isr o s
Thus
1 2 [ ssin(sr) 1 % ssin(sr)
— z Y ds = ds. 11.60
G = G2 rfo 2—s2 T an2y f_w K2 —s2 % [11.60]

The remaining integral is not so simple. It pays to revert to exponential nota-
tion, and factor the denominator:

Gy = i {fw seisr ds_fw se—isr p }
8l | ) =K+ k) 00 8 —=K)(s+ k) ’

1
8 2r

(I — I). [11.61]

These two integrals can be evaluated using Cauchy’s integral formula:

f(@)

(z — 20)

z =2mif(z0), [11.62]

if zp lies within the contour (otherwise the integral is zero). In the present case
the integration is along the real axis, and it passes right over the pole singularities
at Tk. We have to decide how to skirt the poles—I'll go over the one at —k
and under the one at +k (Figure 11.9). (You're welcome to choose some other
convention if you like—even winding seven times around each pole—you’ll get
a different Green’s function, but, as I'll show you in a minute, they're all equally
acceptable.)

For each integral in Equation 11.61 we must “close the contour” in such a
way that the semicircle at infinity contributes nothing. In the case of I}, the factor
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A Im(s)

£ \\/ E >  FIGURE 11.9: Skirting the poles in the

s=-k s=+k &S)  contour integral (Equation 11.61).

" goes to zero when s has a large positive imaginary part; for this one we close
above (Figure 11.10(a)). The contour encloses only the singularity at s = +k, so

sei.\'r 1 seisr
L) = ds = 2mi
! f[s—i—k]s—k s m[s—i—k]

In the case of I», the factor e~**" goes to zero when s has a large negative imagi-
nary part, so we close below (Figure 11.10(b)); this time the contour encloses the
singularity at s = —k (and it goes around in the clockwise direction, so we pick
up a minus sign):

—isr —isr
h:—f 3¢ ] L ogs— —omi| %€
s—k |s+k s—k

Conclusion:

= ire*". [11.63]
s=k

= —ime'*",  [11.64]

s=—k

erkr

G(r) = &;—2r [(me"‘”) _ (—me”‘")] = [11.65]

This, finally, is the Green’s function for the Helmholtz equation—the solution
to Equation 11.52. (If you got lost in all that analysis, you might want to check
the result by direct differentiation—see Problem 11.8.) Or rather, it is a Green’s
function for the Helmholtz equation, for we can add to G(r) any function Go(r)
that satisfies the homogeneous Helmholtz equation:

(V2 4+ k3 Go(r) = 0; [11.66]

(a) (b)
FIGURE 11.10: Closing the contour in Equations 11.63 and 11.64.



412

Chapter 11 Scattering

clearly, the result (G + Gp) still satisfies Equation 11.52. This ambiguity corre-
sponds precisely to the ambiguity in how to skirt the poles—a different choice
amounts to picking a different function Go(r).

Returning to Equation 11.53, the general solution to the Schridinger equation
takes the form

m eiklr—rol

27h? ) Ir—rg|

¥ (r) = Yo(r) — V (ro)y (ro) d°ro, [11.67]

where Y satisfies the free-particle Schrodinger equation,
(V2 + k%) = 0. [11.68]

Equation 11.67 is the integral form of the Schriédinger equation; it is entirely
equivalent to the more familiar differential form. At first glance it looks like an
explicit solution to the Schrédinger equation (for any potential)—which is too
good to be true. Don’t be deceived: There’s a i under the integral sign on the
right hand side, so you can’t do the integral unless you already know the solution!
Nevertheless, the integral form can be very powerful, and it is particularly well
suited to scattering problems, as we’ll see in the following section.

Problem 11.8 Check that Equation 11.65 satisfies Equation 11.52, by direct sub-
stitution. Hint: V2(1/r) = —4783(r).12

* xProblem 11.9 Show that the ground state of hydrogen (Equation 4.80) satisfies

the integral form of the Schrodinger equation, for the appropriate V and E (note
that E is negative, so k = ik, where k = +/—2mE /h).

11.4.2 The First Born Approximation

Suppose V (rp) is localized about rp = 0 (that is, the potential drops to zero outside
some finite region, as is typical for a scattering problem), and we want to calculate
¥ (r) at points far away from the scattering center. Then |r| > |rg| for all points
that contribute to the integral in Equation 11.67, so

r-r
r—rof =2+ —2r-ro =2 (1-2252). [11.69]
3
and hence

r—xg| =r—7F-rp. [11.70]

12See, for example, D. Griffiths. Introduction to Electrodynamics, 3rd ed. (Prentice Hall. Upper
Saddle River, NJ. 1999). Section 1.5.3.
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Let
k = k#: [11.71]
then
ot KIr—ro| ~ eikre—ik-ro’ [11.72]
and therefore ik Ir—ro| s
\r—ry S
Tr - rOI ~ er e—tkd‘o. [1 173]

(In the denominator we can afford to make the more radical approximation
Ir —rp| = r; in the exponent we need to keep the next term. If this puzzles
you, try writing out the next term in the expansion of the denominator. What we
are doing is expanding in powers of the small quantity (rp/7), and dropping all but
the lowest order.)

In the case of scattering, we want

Yo(r) = Ae*?, [11.74]
representing an incident plane wave. For large r, then,

m  etkr —ikr 3

s—— | € OV (ro)y (rop) d ro. [11.75]
2nh* r
This is in the standard form (Equation 11.12), and we can read off the scattering
amplitude:

Y (r) = Ae't -

m
2rhtA

76.9) = " [ OV iy o [11.76)

So far, this is exact. Now we invoke the Born approximation: Suppose the
incoming plane wave is not substantially altered by the potential; then it makes
sense to use _ »
| ¥ (rg) = Yo(rg) = Ae'*0 = Ak ™o, [11.77]

where
kK =kz, [11.78]

inside the integral. (This would be the exact wave function, if V were zero; it is
essentially a weak potential approximation.!3) In the Born approximation, then,

£, ¢) = —# f el K =KToy (poy 3p. [11.79]

13 Generally, partial wave analysis is useful when the incident particle has low energy, for then
only the first few terms in the series contribute significantly; the Born approximation applies when the
potential is weak, compared to the incident energy. so the deflection is small.
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FIGURE 11.11: Two wave vectors in the Born
— approximation: k’ points in the incident direction, k
k’=kz in the scattered direction.

(In case you have lost track of the definitions of k’ and K, they both have magnitude
k., but the former points in the direction of the incident beam, while the latter points
toward the detector—see Figure 11.11; A(k — k’) is the momentum transfer in
the process.)

In particular, for low energy (long wavelength) scattering, the exponential
factor is essentially constant over the scattering region, and the Born approximation
simplifies to

760.0)= ——"_ | vayd®r, (low eneray). [11.80]
2w h?

(I dropped the subscript on r, since there is no likelihood of confusion at this point.)

Example 11.4 Low-energy soft-sphere scattering.!* Suppose

V. ifr <a.
vy=1" "7 =1 [11.81]
0. ifr>a.
In this case the low-energy scattering amplitude is
m 4
6. ¢) = — V (-—7m3> , 11.82
f6.¢ 5203 [11.82]
(independent of 6 and ¢), the differential cross-section is
2
do N 2mVoa®\* ‘
—=|fFrE={— . 11.83
and the total cross-section is
2mVpa® \~
=~ 4x (-’L‘?,“—) . [11.84]
k)i

HYou can't apply the Born approximation to hard-sphere scattering (V) = oo)—the integral
blows up. The point is that we assumed the potential is weak. and doesn’t change the wave function
much in the scattering region. But a hard sphere changes it radically —from Ae'*< 10 zero.
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For a spherically symmetrical potential, V (r) = V (r)—but nor necessarily
at low energy—the Born approximation again reduces to a simpler form. Define

k =k’ —Kk, [11.85]
and let the polar axis for the ro integral lie along &, so that
(k' —K) - rg = krgcosép. [11.86]

Then
fO) =~

o f e/ SOV (r0)rg sin by dro d6y dey. [11.87]
mhn

The ¢p integral is trivial (27), and the 8y integral is one we have encountered
before (see Equation 11.59). Dropping the subscript on r, we are left with

2 ) o0
f@e) = —;—;if rV(rysin(kr)dr, (spherical symmetry). [11.88]
ik Jo

The angular dependence of f is carried by «; in Figure 11.11 we see that

k = 2ksin(6/2). [11.89]

Example 11.5 Yukawa scattering. The Yukawa potential (which is a crude
model for the binding force in an atomic nucleus) has the form

e M

V(r)=8——m:. [11.90]
-

where B and u are constants. The Born approximation gives

2m o0 . 21
mp e Msin(kr)ydr = — mp

—=r 11.91
he Jo h? (U2 + 2) U191

£(0) = —

(You get to work out the integral for yourself, in Problem 11.11.)

Example 11.6 Rutherford scattering. If we put in 8 = ¢;q2/4mep, u = 0,
the Yukawa potential reduces to the Coulomb potential, describing the electrical
interaction of two point charges. Evidently the scattering amplitude is

2mq1q2

. 11.92
47 eghi? [ ]

f@0)= -
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or (using Equations 11.89 and 11.51):

HOES 167{60;‘3?12(0/2). [11.93]
The differential cross-section is the square of this:

do 4192 2

- [l67reoE sinz(G/Z)] ’ [11.54]

which is precisely the Rutherford formula (Equation 11.11). It happens that for
the Coulomb potential, classical mechanics, the Born approximation, and quantum
field theory all yield the same result. As they say in the computer business, the
Rutherford formula is amazingly “robust.”

xProblem 11.10 Find the scattering amplitude, in the Born approximation, for soft-
sphere scattering at arbitrary energy. Show that your formula reduces to
Equation 11.82 in the low-energy limit.

Problem 11.11 Evaluate the integral in Equation 11.91, to confirm the expression
on the right.

* xProblem 11.12 Calculate the total cross-section for scattering from a Yukawa
potential, in the Born approximation. Express your answer as a function of E.

xProblem 11.13 For the potential in Problem 11.4,
(a) calculate f(@), D(@), and o, in the low-energy Born approximation;
(b) calculate f(#) for arbitrary energies, in the Born approximation;

(c) show that your results are consistent with the answer to Problem 11.4, in the
appropriate regime.

11.4.3 The Born Series

The Born approximation is similar in spirit to the impulse approximation in
classical scattering theory. In the impulse approximation we begin by pretending
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Actual
F, trajectory
‘;‘ /
e T _.f_:__j_é— ____________

Scattering center

FIGURE 11.12: The impulse approximation assumes that the particle continues unde-
flected, and calculates the transverse momentum delivered.

that the particle keeps. going in a straight line (Figure 11.12), and compute the
transverse impulse that would be delivered to it in that case:

I=fFldr. [11.95]

If the deflection is relatively small, this should be a good approximation to the
transverse momentum imparted to the particle, and hence the scattering angle is

6 = tan~!(1/p), [11.96]

where p is the incident momentum. This is, if you like, the “first-order” impulse
approximation (the zeroth-order is what we started with: no deflection at all).
Likewise, in the zeroth-order Born approximation the incident plane wave passes
by with no modification, and what we explored in the previous section is really the
first-order correction to this. But the same idea can be iterated to generate a series
of higher-order corrections, which presumably converge to the exact answer.

The integral form of the Schrédinger equation reads

Y (r) = Yo(r) + f g(r — ro)V (ro)y (ro) d°ro, [11.97]

where Y is the incident wave,
m ek

2wh? r

gr)=— [11.98]

is the Green’s function (into which I have now incorporated the factor 2/ /k2, for
convenience), and V is the scattering potential. Schematically,

v = o +fgv¢. [11.99]

Suppose we take this expression for ¥, and plug it in under the integral sign:

¥ = wo+fgv¢o+fnggv¢. [11.100]
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FIGURE 11.13: Diagrammatic interpretation of the Born series (Equation 11.101).

Iterating this procedure, we obtain a formal series for :

w=wo+fngo+fngngo+ffnggv.ngo+---. [11.101]

In each integrand only the incident wavefunction () appears, together with more
and more powers of gV. The first Born approximation truncates the series after the
second term, but it is pretty clear how one generates the higher-order corrections.

The Born series can be represented diagrammatically as shown in Figure 11.13.
In zeroth order ¥ is untouched by the potential; in first order it is “kicked” once,
and then “propagates” out in some new direction; in second order it is kicked, prop-
agates to a new location, is kicked again, and then propagates out; and so on. In this
context the Green'’s function is sometimes called the propagator—it tells you how
the disturbance propagates between one interaction and the next. The Born series
was the inspiration for Feynman’s formulation of relativistic quantum mechanics,
which is expressed entirely in terms of vertex factors (V) and propagators (g),
connected together in Feynman diagrams.

Problem 11.14 Calculate 6 (as a function of the impact parameter) for Rutherford
scattering, in the impulse approximation. Show that your result is consistent with
the exact expression (Problem 11.1(a)), in the appropriate limit.

* % xProblem 11.15 Find the scattering amplitude for low-energy soft-sphere scattering
in the second Born approximation. Answer: —(2m Voa? /31‘12)[1 — (4m Vya? /51‘12)].

FURTHER PROBLEMS FOR CHAPTER 11

* % xProblem 11.16 Find the Green’s function for the one-dimensional Schrédinger
equation, and use it to construct the integral form (analogous to Equation 11.67).
Answer:

e
Y (x) = Yo(x) — = f ek =20l y (x0) 9 (x0) dxo. [11.102]
h<k —00
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* xProblem 11.17 Use your result in Problem 11.16 to develop the Born approxima-
tion for one-dimensional scattering (on the interval —oco < x < oo, with no “brick
wall” at the origin). That is, choose Yp(x) = Ae'*  and assume W (xp) = Yo(xp)
to evaluate the integral. Show that the reflection coefficient takes the form:

m \| [
R | — 2Ty () dx
(h2k> |/;oo )

Problem 11.18 Use the one-dimensional Born approximation (Problem 11.17) to
compute the transmission coefficient (T = 1| — R) for scattering from a delta
function (Equation 2.114) and from a finite square well (Equation 2.145). Compare
your results with the exact answers (Equations 2.141 and 2.169).

2

[11.103]

Problem 11.19 Prove the optical theorem, which relates the total cross-section
to the imaginary part of the forward scattering amplitude:

a=%%mﬂmy [11.104]

Hint: Use Equations 11.47 and 11.48.

Problem 11.20 Use the Born approximation to determine the total cross-section
for scattering from a gaussian potential

V()= Ae H

Express your answer in terms of the constants A, u, and m (the mass of the incident
particle), and k = ~/2mE /h, where E is the incident energy.
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AFTERWORD

Now that you have (I hope) a sound understanding of what quantum mechanics
says, I would like to return to the question of what it ineans —continuing the story
begun in Section 1.2. The source of the problem is the indeterminacy associated
with the statistical interpretation of the wave function. For W (or, more generally,
the guantum state—it could be a spinor, for example) does not uniquely deter-
mine the outcome of a measurement; all it provides is the statistical distribution of
possible results. This raises a profound question: Did the physical system *“actually
have” the attribute in question prior to the measurement (the so-called realist view-
point), or did the act of measurement itself “create” the property, limited only by
the statistical constraint imposed by the wave function (the orthodox position)—or
can we duck the question entirely, on the grounds that it is “metaphysical” (the
agn